# BUS SCHEDULING IN URBAN TRANSPORTATION

#### József Békési

#### Department of Informatics, Juhász Gyula Teacher's Training Faculty, University of Szeged

Koper 29 August, 2008

## **OVERVIEW**

- Introduction
- **Bus scheduling models**
- Fueling time constraints
- ► Further questions

## URBAN BUS TRANSPORTATION

#### Provides:

• Interesting, complex and hard problems for Operations Research

#### Because:

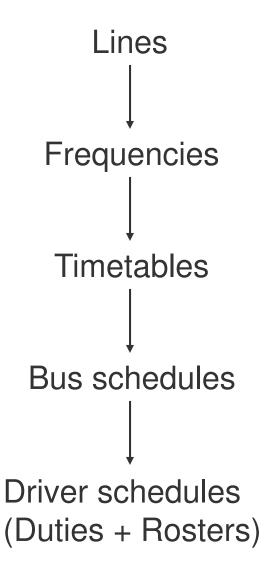
- Large savings can be realized
- A large number of resources is involved

## LARGE NUMBERS

Szeged

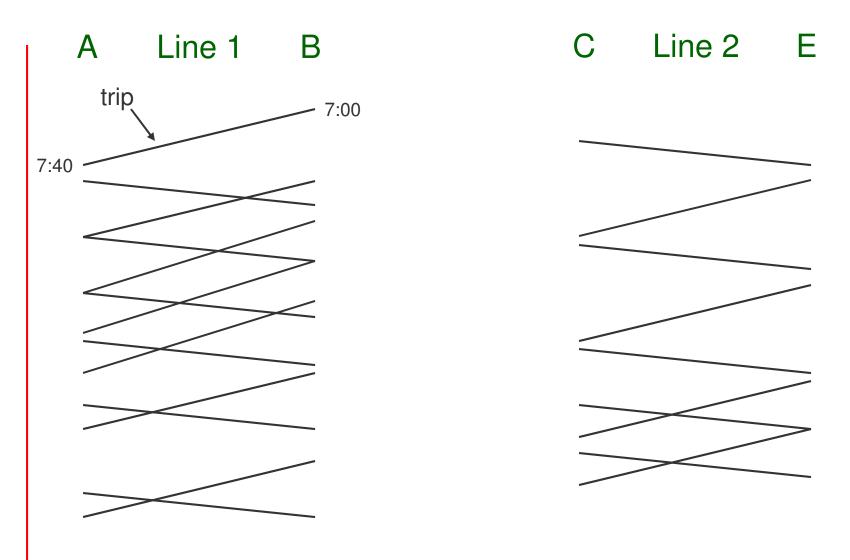
Number of<br/>trips per<br/>dayNumber of<br/>buses per dayNumber<br/>of<br/>bus types27631074

#### **OPERATIONS PLANNING PROCESS**

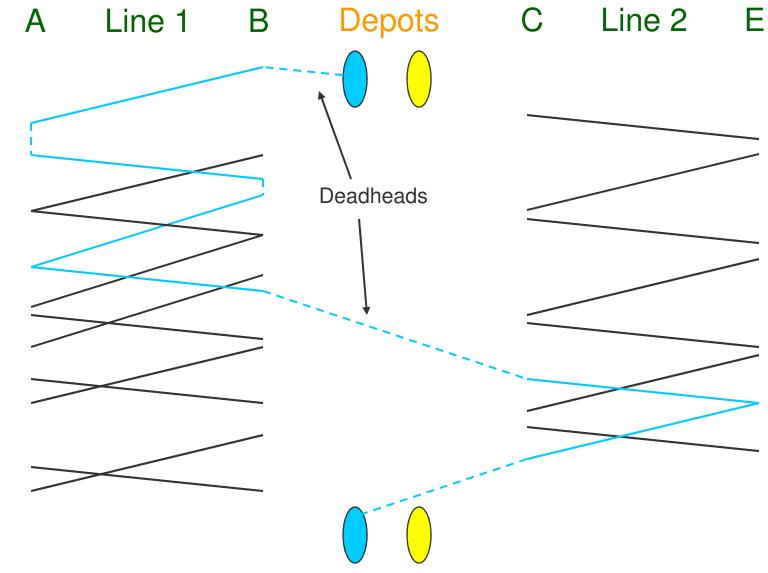


# BUS SCHEDULING PROBLEM DEFINITION

- One-day horizon
- Several depots
  - Different locations
  - Different bus types (standard, low floor, long, short, ...)



Time



# **PROBLEM DEFINITION** Line 1 B Line 2 E Depots С Α

Time

#### Constraints

- Cover all trips
- Feasible bus routes
  - Schedule starts and ends at the same depot
  - No overlaps in time
- Bus availability per depot
- Depot-trip compatibility
- Deadhead restrictions

#### **Objectives:**

- Minimize the number of buses
- Minimize deadhead costs
  - Proportional to travel distance or time
- No trip costs

## SOLUTION METHODOLOGIES

Multi-commodity flow minimization models

- Connection based network model (Andreas Löbel, TU Berlin, 1997)
- Time space network model (Natalie Kliewer et al., University of Paderborn, 2006)

## **CONNECTION BASED MODEL**

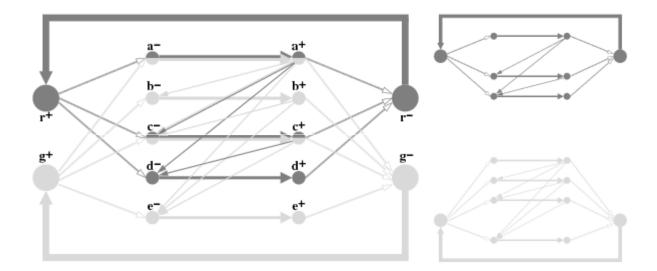


Figure 2.6: Digraphs (V', A') and  $(V'_d, A'_d)$ ,  $d \in \mathcal{D}$ , with  $\mathcal{D} = \{r, g\}$  and  $\mathcal{T} = \{a, b, c, d, e\}$ .

## **CONNECTION BASED MODEL**

To describe a feasible vehicle schedule (and multicommodity flow vector, respectively), an integer vector  $x \in \mathbb{R}^{A'}$  must satisfy the conditions from (1.23):

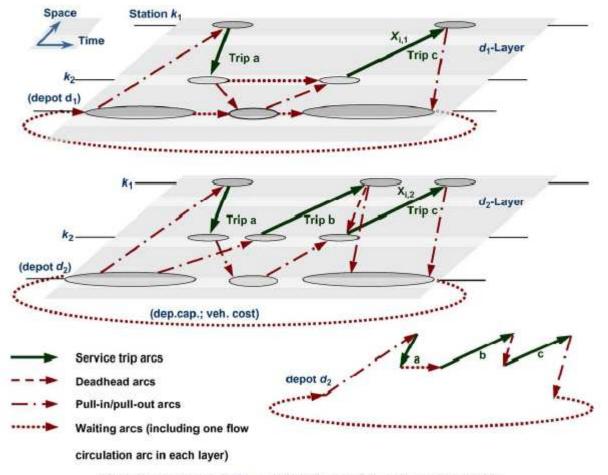
1. The common lower and upper capacities (1.23b), both together define the equations

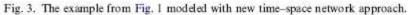
(2.2) 
$$\sum_{d \in G(t)} x_{(t^-,t^+)}^d = 1, \quad \forall t \in \mathcal{T}.$$

2. The flow conservation constraints (1.23c) defining

(2.3) 
$$x^{d}\left(\delta_{D'}^{+}(v)\right) - x^{d}\left(\delta_{D'}^{-}(v)\right) = 0, \quad \forall v \in V'_{d} \; \forall d \in \mathcal{D},$$

#### TIME SPACE NETWORK MODEL





#### TIME SPACE NETWORK MODEL

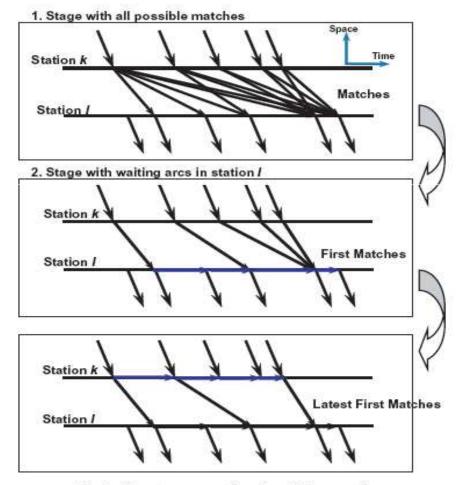
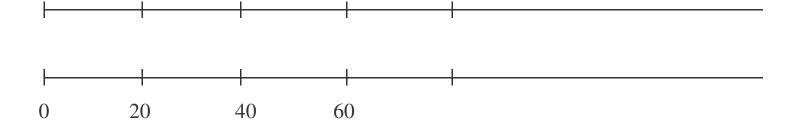


Fig. 4. Two-stage aggregation of possible connections.

#### FUELING TIME CONSTRAINTS



 $X_{ij} = \begin{cases} 1 \text{ if schedule i is refueled in time j} \\ 0 \text{ otherwise} \end{cases}$ 

We consider only those variables, where schedule i can be refueled in time j.

## FUELING TIME CONSTRAINTS

min  $\sum C_{ij} X_{ij}$ 

*s*.*t*.

$$\sum_{j=1}^{t} X_{ij} \leq 1, \text{ for all schedule } i$$

$$\sum_{i=1}^{s} X_{ij} \leq f, \text{ for all time } j$$
where
$$C_{ij} : \text{cost of fueling schedule } i \text{ at time } j$$

$$t : \text{number of time periods}$$

s : number of schedules



## Hvala

)