Finite Vertex Primitive 2-Path Transitive Graphs

Hua Zhang School of Mathematics and Statistics University of Western Australia

Symmetries of Graphs and Networks, Slovenija, 2010 (joint work with Caiheng Li)

August 4, 2010

Table of contents

- 1 Introduction
 - Definitions
 - Motivation
- 2 Local Structure
 - Some simple facts
 - Observation
 - Structure of point stabilizers

 Introduction
 Definitions

 Local Structure
 Definitions

 Vertex primitive case
 Motivation

 Definitions
 2-path

 Γ an undirected, simple, connected graph with vertex set $V\Gamma$ and edge set $E\Gamma$, and $G \leq Aut\Gamma$.

Definition

Let (α, β, γ) be a 2-arc of Γ . Then the 2-*path* corresponds to (α, β, γ) is defined by identifying (α, β, γ) with (γ, β, α) , denoted as $[\alpha, \beta, \gamma]$.

 Introduction
 Definitions

 Local Structure
 Motivation

 Vertex primitive case
 Motivation

 2-path
 Vertex primitive case

 Γ an undirected, simple, connected graph with vertex set $V\Gamma$ and edge set $E\Gamma$, and $G \leq Aut\Gamma$.

Definition

Let (α, β, γ) be a 2-arc of Γ . Then the 2-*path* corresponds to (α, β, γ) is defined by identifying (α, β, γ) with (γ, β, α) , denoted as $[\alpha, \beta, \gamma]$.

 Introduction
 Definitions

 Local Structure
 Motivation

 Vertex primitive case
 Motivation

 2-path
 Vertex primitive case

 Γ an undirected, simple, connected graph with vertex set $V\Gamma$ and edge set $E\Gamma$, and $G \leq Aut\Gamma$.

Definition

Let (α, β, γ) be a 2-arc of Γ . Then the 2-*path* corresponds to (α, β, γ) is defined by identifying (α, β, γ) with (γ, β, α) , denoted as $[\alpha, \beta, \gamma]$.

 Introduction Local Structure Vertex Primitive case An application
 Definitions Motivation

 Definitions 2-path
 2-path

 Γ an undirected, simple, connected graph with vertex set $V\Gamma$ and edge set $E\Gamma$, and $G \leq Aut\Gamma$.

Definition

Let (α, β, γ) be a 2-arc of Γ . Then the 2-*path* corresponds to (α, β, γ) is defined by identifying (α, β, γ) with (γ, β, α) , denoted as $[\alpha, \beta, \gamma]$.

Definitions Motivation

Definitions half-transitive, line graph

Definition

- If Γ is G-vertex transitive and G-edge transitive, but not G-arc transitive, then Γ is called G-half transitive. In case G = AutΓ, it is called half-transitive.
- The *line graph* $L(\Gamma)$ of Γ is defined as the graph with vertex set $E\Gamma$, such that two vertices e_1 and e_2 of $L(\Gamma)$ are adjacent if and only if they are incident in Γ .

Definitions Motivation

Definitions half-transitive, line graph

Definition

- If Γ is G-vertex transitive and G-edge transitive, but not G-arc transitive, then Γ is called G-half transitive. In case G = AutΓ, it is called half-transitive.
- The *line graph* L(Γ) of Γ is defined as the graph with vertex set EΓ, such that two vertices e₁ and e₂ of L(Γ) are adjacent if and only if they are incident in Γ.

Definitions Motivation

Definitions half-transitive, line graph

Definition

- If Γ is G-vertex transitive and G-edge transitive, but not G-arc transitive, then Γ is called G-half transitive. In case G = AutΓ, it is called half-transitive.
- The *line graph* $L(\Gamma)$ of Γ is defined as the graph with vertex set $E\Gamma$, such that two vertices e_1 and e_2 of $L(\Gamma)$ are adjacent if and only if they are incident in Γ .

Introduction Local Structure Definitions Vertex primitive case An application line graph 1,2 4,3 5 4,

Definitions Motivation

Motivation Motivations and Aim

Motivations

- motivation 1: To extend the study of symmetrical graphs, based on: {2-arc-transitive graphs}⊂{2-path-transitive graphs}⊂{arc-transitive graphs}.
- motivation 2: To construct new half-transitive graphs.

The **aim** is to find a solution for the following problem:

Definitions Motivation

Motivation Motivations and Aim

Motivations

- motivation 1: To extend the study of symmetrical graphs, based on: {2-arc-transitive graphs}⊂{2-path-transitive graphs}⊂{arc-transitive graphs}.
- motivation 2: To construct new half-transitive graphs.

The **aim** is to find a solution for the following problem:

Definitions Motivation

Motivation Motivations and Aim

Motivations

- motivation 1: To extend the study of symmetrical graphs, based on: {2-arc-transitive graphs}⊂{2-path-transitive graphs}⊂{arc-transitive graphs}.
- motivation 2: To construct new half-transitive graphs.

The **aim** is to find a solution for the following problem:

Definitions Motivation

Motivation Motivations and Aim

Motivations

- motivation 1: To extend the study of symmetrical graphs, based on: {2-arc-transitive graphs}⊂{2-path-transitive graphs}⊂{arc-transitive graphs}.
- motivation 2: To construct new half-transitive graphs.

The **aim** is to find a solution for the following problem:

Definitions Motivation

Previous work related to 2-path transitive graphs:

- A general study of *k*-path transitive graphs was first carried out by M. D. E. Conder and C. E. Praeger in 1996.
- Marušič and Xu revealed the relationship between 1-regular cubic (which is a special case of 2-path transitive) graphs and half-transitive graphs in 1997.

Definitions Motivation

Previous work related to 2-path transitive graphs:

- A general study of *k*-path transitive graphs was first carried out by M. D. E. Conder and C. E. Praeger in 1996.
- Marušič and Xu revealed the relationship between 1-regular cubic (which is a special case of 2-path transitive) graphs and half-transitive graphs in 1997.

Some simple facts Observation Structure of point stabilizers

Transitivities of Γ and $L(\Gamma)$

The connection between the transitivity of Γ and the transitivity of $L(\Gamma)$ ($G \leq Aut\Gamma$).

- (i) Γ is (G, 2)-path-transitive if and only if L(Γ) is G-edge transitive;
- (ii) Γ is (G, 2)-arc-transitive if and only if $L(\Gamma)$ is G-arc transitive;
- (iii) Assume that Γ is G-vertex-transitive. Then Γ is
 (G,2)-path-transitive but not (G,2)-arc-transitive if and only
 if L(Γ) is G-half-transitive.

Some simple facts Observation Structure of point stabilizers

Transitivities of Γ and $L(\Gamma)$

The connection between the transitivity of Γ and the transitivity of $L(\Gamma)$ ($G \leq Aut\Gamma$).

- (i) Γ is (G, 2)-path-transitive if and only if L(Γ) is G-edge transitive;
- (ii) Γ is (G, 2)-arc-transitive if and only if $L(\Gamma)$ is G-arc transitive;
- (iii) Assume that Γ is G-vertex-transitive. Then Γ is
 (G,2)-path-transitive but not (G,2)-arc-transitive if and only if L(Γ) is G-half-transitive.

Some simple facts Observation Structure of point stabilizers

Transitivities of Γ and $L(\Gamma)$

The connection between the transitivity of Γ and the transitivity of $L(\Gamma)$ ($G \leq Aut\Gamma$).

- (i) Γ is (G, 2)-path-transitive if and only if L(Γ) is G-edge transitive;
- (ii) Γ is (G, 2)-arc-transitive if and only if $L(\Gamma)$ is G-arc transitive;
- (iii) Assume that Γ is G-vertex-transitive. Then Γ is
 (G,2)-path-transitive but not (G,2)-arc-transitive if and only if L(Γ) is G-half-transitive.

Some simple facts Observation Structure of point stabilizers

Observation

A key step of this work is to determine the structure of point stabilizers for 2-path transitive graphs.

- If *Γ* is a (regular) (*G*, 2)-path-transitive graph, then it is *G*-arc-transitive.
- (Conder and Praeger, 1996) Γ is (G, 2)-path transitive but not (G, 2)-arc-transitive if and only if G_α^{Γ(α)} is 2-homogeneous but not 2-transitive.
- (W. M. Kantor, 1969) If G is 2-homogeneous but not 2-transitive of degree n, then ASL₁(q) ≤ G ≤ AΓL₁(p^e), and n = p^e ≡ 3(mod 4) with p prime, e odd.

Some simple facts Observation Structure of point stabilizers

Observation

A key step of this work is to determine the structure of point stabilizers for 2-path transitive graphs.

- If Γ is a (regular) (G, 2)-path-transitive graph, then it is G-arc-transitive.
- (Conder and Praeger, 1996) Γ is (G, 2)-path transitive but not (G, 2)-arc-transitive if and only if G_α^{Γ(α)} is 2-homogeneous but not 2-transitive.
- (W. M. Kantor, 1969) If G is 2-homogeneous but not 2-transitive of degree n, then ASL₁(q) ≤ G ≤ AΓL₁(p^e), and n = p^e ≡ 3(mod 4) with p prime, e odd.

Some simple facts Observation Structure of point stabilizers

Observation

A key step of this work is to determine the structure of point stabilizers for 2-path transitive graphs.

- If Γ is a (regular) (G, 2)-path-transitive graph, then it is G-arc-transitive.
- (Conder and Praeger, 1996) Γ is (G, 2)-path transitive but not (G, 2)-arc-transitive if and only if G_α^{Γ(α)} is 2-homogeneous but not 2-transitive.
- (W. M. Kantor, 1969) If G is 2-homogeneous but not 2-transitive of degree n, then ASL₁(q) ≤ G ≤ AΓL₁(p^e), and n = p^e ≡ 3(mod 4) with p prime, e odd.

Some simple facts Observation Structure of point stabilizers

Observation

A key step of this work is to determine the structure of point stabilizers for 2-path transitive graphs.

- If Γ is a (regular) (G, 2)-path-transitive graph, then it is G-arc-transitive.
- (Conder and Praeger, 1996) Γ is (G, 2)-path transitive but not (G, 2)-arc-transitive if and only if G_α^{Γ(α)} is 2-homogeneous but not 2-transitive.
- (W. M. Kantor, 1969) If G is 2-homogeneous but not 2-transitive of degree n, then $ASL_1(q) \le G \le A\Gamma L_1(p^e)$, and $n = p^e \equiv 3 \pmod{4}$ with p prime, e odd.

Some simple facts Observation Structure of point stabilizers

Structure of point stabilizers

A result of Weiss: $G^{[1]}_{\alpha\beta} = 1$, is used to proof this theorem:

Structure Theorem

Let Γ be a (G, 2)-path transitive but not (G, 2)-arc transitive graph, where $G \leq Aut\Gamma$. Let (α, β) be a arc of Γ . Then either

(1) G_{α} is faithful on $\Gamma(\alpha)$, and $G_{\alpha} = G_{\alpha}^{\Gamma(\alpha)} \leq A\Gamma L_{1}(q)$, where $q = p^{e} \equiv 3 \pmod{4}$ and p is a prime, or (2) G_{α} is not faithful on $\Gamma(\alpha)$, and the following hold: (a) $G_{\beta}^{[1]} \cong G_{\alpha}^{[1]} \triangleleft G_{\alpha\beta}^{\Gamma(\beta)} \leq \mathbb{Z}_{(q-1)/2} : \mathbb{Z}_{e}$; (b) $G_{\alpha} = (G_{\alpha}^{[1]} \times (\mathbb{Z}_{p}^{e} : G_{\beta}^{[1]})) \cdot O$, and $G_{\alpha\beta} = (G_{\alpha}^{[1]} \times G_{\beta}^{[1]}) \cdot O$, where $O \cong G_{\alpha\beta}^{\Gamma(\alpha)} / (G_{\beta}^{[1]})^{\Gamma(\alpha)}$; (c) $q(q-1)/2 \mid |G_{\alpha}^{\Gamma(\alpha)}|$, and $|G_{\alpha}| \mid q(\frac{(q-1)e}{2})^{2}$. In particular, $2 \mid |G_{\alpha}|$.

Some simple facts Observation Structure of point stabilizers

Structure of point stabilizers

A result of Weiss: $G^{[1]}_{\alpha\beta} = 1$, is used to proof this theorem:

Structure Theorem

Let Γ be a (G, 2)-path transitive but not (G, 2)-arc transitive graph, where $G \leq Aut\Gamma$. Let (α, β) be a arc of Γ . Then either

(1) G_{α} is faithful on $\Gamma(\alpha)$, and $G_{\alpha} = G_{\alpha}^{\Gamma(\alpha)} \leq A\Gamma L_1(q)$, where $q = p^e \equiv 3 \pmod{4}$ and p is a prime, or

(2) G_{α} is not faithful on $\Gamma(\alpha)$, and the following hold:

(a) $G_{\beta}^{[1]} \cong G_{\alpha\beta}^{[1]} \lhd G_{\alpha\beta}^{\Gamma(\beta)} \le \mathbb{Z}_{(q-1)/2} : \mathbb{Z}_e;$ (b) $G_{\alpha} = (G_{\alpha}^{[1]} \times (\mathbb{Z}_{\rho}^e : G_{\beta}^{[1]})).O$, and $G_{\alpha\beta} = (G_{\alpha}^{[1]} \times G_{\beta}^{[1]}).O$, where $O \cong G_{\alpha\beta}^{\Gamma(\alpha)}/(G_{\beta}^{[1]})^{\Gamma(\alpha)};$ (c) $q(q-1)/2 \mid |G_{\alpha}^{\Gamma(\alpha)}|$, and $|G_{\alpha}| \mid q(\frac{(q-1)e}{2})^2$. In particular,

Some simple facts Observation Structure of point stabilizers

Structure of point stabilizers

A result of Weiss: $G_{\alpha\beta}^{[1]} = 1$, is used to proof this theorem:

Structure Theorem

Let Γ be a (G, 2)-path transitive but not (G, 2)-arc transitive graph, where $G \leq Aut\Gamma$. Let (α, β) be a arc of Γ . Then either

- (1) G_{α} is faithful on $\Gamma(\alpha)$, and $G_{\alpha} = G_{\alpha}^{\Gamma(\alpha)} \leq A\Gamma L_1(q)$, where $q = p^e \equiv 3 \pmod{4}$ and p is a prime, or
- (2) G_{α} is not faithful on $\Gamma(\alpha)$, and the following hold:

(a) $G_{\beta}^{[1]} \cong G_{\alpha}^{[1]} \lhd G_{\alpha\beta}^{\Gamma(\beta)} \le \mathbb{Z}_{(q-1)/2} : \mathbb{Z}_e;$ (b) $G_{\alpha} = (G_{\alpha}^{[1]} \times (\mathbb{Z}_p^e : G_{\beta}^{[1]})).O$, and $G_{\alpha\beta} = (G_{\alpha}^{[1]} \times G_{\beta}^{[1]}).O$, where $O \cong G_{\alpha\beta}^{\Gamma(\alpha)} / (G_{\beta}^{[1]})^{\Gamma(\alpha)};$ (c) $q(q-1)/2 \mid |G_{\alpha}^{\Gamma(\alpha)}|$, and $|G_{\alpha}| \mid q(\frac{(q-1)e}{2})^2$. In particular, $2 \nmid |G_{\alpha}|.$

Some simple facts Observation Structure of point stabilizers

Structure of point stabilizers

A result of Weiss: $G^{[1]}_{\alpha\beta} = 1$, is used to proof this theorem:

Structure Theorem

Let Γ be a (G, 2)-path transitive but not (G, 2)-arc transitive graph, where $G \leq Aut\Gamma$. Let (α, β) be a arc of Γ . Then either

(1) G_{α} is faithful on $\Gamma(\alpha)$, and $G_{\alpha} = G_{\alpha}^{\Gamma(\alpha)} \leq A\Gamma L_1(q)$, where $q = p^e \equiv 3 \pmod{4}$ and p is a prime, or

(2) G_{α} is not faithful on $\Gamma(\alpha)$, and the following hold:

(a)
$$G_{\beta}^{[1]} \cong G_{\alpha}^{[1]} \lhd G_{\alpha\beta}^{\Gamma(\beta)} \le \mathbb{Z}_{(q-1)/2} : \mathbb{Z}_e;$$

- (b) $G_{\alpha} = (G_{\alpha}^{[1]} \times (\mathbb{Z}_{p}^{e} : G_{\beta}^{[1]})).O$, and $G_{\alpha\beta} = (G_{\alpha}^{[1]} \times G_{\beta}^{[1]}).O$, where $O \cong G_{\alpha\beta}^{\Gamma(\alpha)}/(G_{\beta}^{[1]})^{\Gamma(\alpha)}$;
- (c) $q(q-1)/2 \mid |G_{\alpha}^{\Gamma(\alpha)}|$, and $|G_{\alpha}| \mid q(\frac{(q-1)e}{2})^2$. In particular, $2 \nmid |G_{\alpha}|$.

Some simple facts Observation Structure of point stabilizers

Structure of point stabilizers

A result of Weiss: $G_{\alpha\beta}^{[1]} = 1$, is used to proof this theorem:

Structure Theorem

Let Γ be a (G, 2)-path transitive but not (G, 2)-arc transitive graph, where $G \leq Aut\Gamma$. Let (α, β) be a arc of Γ . Then either

(1) G_{α} is faithful on $\Gamma(\alpha)$, and $G_{\alpha} = G_{\alpha}^{\Gamma(\alpha)} \leq A\Gamma L_1(q)$, where $q = p^e \equiv 3 \pmod{4}$ and p is a prime, or

(2) G_{α} is not faithful on $\Gamma(\alpha)$, and the following hold:

(a) $G_{\beta}^{[1]} \cong G_{\alpha}^{[1]} \lhd G_{\alpha\beta}^{\Gamma(\beta)} \le \mathbb{Z}_{(q-1)/2} : \mathbb{Z}_{e};$ (b) $G_{\alpha} = (G_{\alpha}^{[1]} \times (\mathbb{Z}_{\rho}^{e} : G_{\beta}^{[1]})).O$, and $G_{\alpha\beta} = (G_{\alpha}^{[1]} \times G_{\beta}^{[1]}).O$, where $O \cong G_{\alpha\beta}^{\Gamma(\alpha)} / (G_{\beta}^{[1]})^{\Gamma(\alpha)};$ (c) $q(q-1)/2 \mid |G_{\alpha}^{\Gamma(\alpha)}|$, and $|G_{\alpha}| \mid q(\frac{(q-1)e}{2})^{2}$. In particular,

Some simple facts Observation Structure of point stabilizers

Structure of point stabilizers

A result of Weiss: $G^{[1]}_{\alpha\beta}=1$, is used to proof this theorem:

Structure Theorem

Let Γ be a (G, 2)-path transitive but not (G, 2)-arc transitive graph, where $G \leq Aut\Gamma$. Let (α, β) be a arc of Γ . Then either

(1) G_{α} is faithful on $\Gamma(\alpha)$, and $G_{\alpha} = G_{\alpha}^{\Gamma(\alpha)} \leq A\Gamma L_1(q)$, where $q = p^e \equiv 3 \pmod{4}$ and p is a prime, or

(2) G_{α} is not faithful on $\Gamma(\alpha)$, and the following hold:

(a)
$$G_{\beta}^{[1]} \cong G_{\alpha}^{[1]} \lhd G_{\alpha\beta}^{\Gamma(\beta)} \le \mathbb{Z}_{(q-1)/2} : \mathbb{Z}_{e};$$

(b) $G_{\alpha} = (G_{\alpha}^{[1]} \times (\mathbb{Z}_{p}^{e} : G_{\beta}^{[1]})).O$, and $G_{\alpha\beta} = (G_{\alpha}^{[1]} \times G_{\beta}^{[1]}).O$,
where $O \cong G_{\alpha\beta}^{\Gamma(\alpha)}/(G_{\beta}^{[1]})^{\Gamma(\alpha)};$
(c) $q(q-1)/2 \mid |G_{\alpha}^{\Gamma(\alpha)}|$, and $|G_{\alpha}| \mid q(\frac{(q-1)e}{2})^{2}$. In particular,
 $2 \nmid |G_{\alpha}|.$

Primitive types Examples A classification of almost simple type

Primitive type

We focus our attention on the vertex primitive case.

Proposition

Let Γ be a *G*-vertex primitive, (*G*, 2)-path transitive but not (*G*, 2)-arc transitive graph, where $G \leq \text{Aut}\Gamma$. Then *G* is affine or almost simple, examples exist for each type.

Primitive types Examples A classification of almost simple type

Primitive type

We focus our attention on the vertex primitive case.

Proposition

Let Γ be a *G*-vertex primitive, (G, 2)-path transitive but not (G, 2)-arc transitive graph, where $G \leq \text{Aut}\Gamma$. Then *G* is affine or almost simple, examples exist for each type.

Primitive types Examples A classification of almost simple type

Primitive type

We focus our attention on the vertex primitive case.

Proposition

Let Γ be a *G*-vertex primitive, (G, 2)-path transitive but not (G, 2)-arc transitive graph, where $G \leq \text{Aut}\Gamma$. Then *G* is affine or almost simple, examples exist for each type.

Primitive types Examples A classification of almost simple type

Primitive type

We focus our attention on the vertex primitive case.

Proposition

Let Γ be a *G*-vertex primitive, (G, 2)-path transitive but not (G, 2)-arc transitive graph, where $G \leq \text{Aut}\Gamma$. Then *G* is affine or almost simple, examples exist for each type.

Primitive types Examples A classification of almost simple type

examples

Example

Let $\Gamma = K_8$, $G = \mathbb{Z}_2^3 : (\mathbb{Z}_7 : \mathbb{Z}_3)$, $G_\alpha = \mathbb{Z}_7 : \mathbb{Z}_3$. Then Γ is vertex-primitive, (G, 2)-path transitive but not (G, 2)-arc transitive, of affine type.

Example

Let G = M, the Monster simple group. Then G contains a maximal subgroup $H = \mathbb{Z}_{59}:\mathbb{Z}_{29} := K : L$. By the ATLAS, the order $|N_G(L)|$ is even, thus there exists a 2-element $g \in N_G(L)$. Furthermore, H acts 2-homogeneously but not 2-transitively on $[H : H \cap H^g]$, so the graph $\Gamma = \text{Cos}(G, H, HgH)$ is (G, 2)-path transitive but not (G, 2)-arc transitive, of almost simple type.

Primitive types Examples A classification of almost simple type

examples

Example

Let
$$\Gamma = K_8$$
, $G = \mathbb{Z}_2^3 : (\mathbb{Z}_7 : \mathbb{Z}_3)$, $G_\alpha = \mathbb{Z}_7 : \mathbb{Z}_3$. Then Γ is vertex-primitive, $(G, 2)$ -path transitive but not $(G, 2)$ -arc transitive, of affine type.

Example

Let G = M, the Monster simple group. Then G contains a maximal subgroup $H = \mathbb{Z}_{59}:\mathbb{Z}_{29} := K : L$. By the ATLAS, the order $|N_G(L)|$ is even, thus there exists a 2-element $g \in N_G(L)$. Furthermore, H acts 2-homogeneously but not 2-transitively on $[H : H \cap H^g]$, so the graph $\Gamma = \text{Cos}(G, H, HgH)$ is (G, 2)-path transitive but not (G, 2)-arc transitive, of almost simple type.

Primitive types Examples A classification of almost simple type

A classification

For AS type, a classification is obtained by using the result of "**Primitive groups with soluble stabilizers**", consists of 7 tables.

G ₀	H ₀
A ₅	$S_4 \cap \mathit{G}_0, \; (S_3 \times S_2) \cap \mathit{G}_0$
A ₆	$(S_4 imes S_2) \cap \mathit{G}_0, \ (S_3 \wr S_2) \cap \mathit{G}_0, \ (S_2 \wr S_3) \cap \mathit{G}_0$
A ₇	$(S_4 \times S_3) \cap G_0$
A ₈	$(S_4\wrS_2)\cap G_0$
S ₈	$S_2 \wr S_4$
Ag	$(S_3 \wr S_3) \cap \mathcal{G}_0, \ \mathrm{AGL}_2(3) \cap \mathcal{G}_0$
A ₁₂	$(S_4\wrS_3)\cap \mathit{G}_0,\ (S_3\wrS_4)\cap \mathit{G}_0$
A ₁₆	$(S_4\wrS_4)\cap \mathit{G}_0$
A _p	$\mathbb{Z}_{p}:\mathbb{Z}_{\frac{p-1}{2}}, \ p \neq 7, 11, 17, 23$
Sp	$\mathbb{Z}_{p}:\mathbb{Z}_{p-1}^{2}, \ p=7,11,17,23$

Primitive types Examples A classification of almost simple type

Steps of the classification

- (a) From the seven tables, find out all maximal subgroups with odd order, we obtained a list (not so long);
- (b) From the above list, read off all maximal subgroups with the form Z^e_p : L or Z^e_p × L : L, where L ≤ Z_{(p^e-1)/2} : Z_e, we obtained a shorter list of candidates for (G, G_α):

Primitive types Examples A classification of almost simple type

Steps of the classification

- (a) From the seven tables, find out all maximal subgroups with odd order, we obtained a list (not so long);
- (b) From the above list, read off all maximal subgroups with the form $\mathbb{Z}_p^e : L$ or $\mathbb{Z}_p^e \times L : L$, where $L \leq \mathbb{Z}_{(p^e-1)/2} : \mathbb{Z}_e$, we obtained a shorter list of candidates for (G, G_α) :

Primitive types Examples A classification of almost simple type

Steps of the classification

- (a) From the seven tables, find out all maximal subgroups with odd order, we obtained a list (not so long);
- (b) From the above list, read off all maximal subgroups with the form $\mathbb{Z}_p^e : L$ or $\mathbb{Z}_p^e \times L : L$, where $L \leq \mathbb{Z}_{(p^e-1)/2} : \mathbb{Z}_e$, we obtained a shorter list of candidates for (G, G_α) :

Primitive types Examples A classification of almost simple type

Steps of the classification

- (a) From the seven tables, find out all maximal subgroups with odd order, we obtained a list (not so long);
- (b) From the above list, read off all maximal subgroups with the form $\mathbb{Z}_p^e : L$ or $\mathbb{Z}_p^e \times L : L$, where $L \leq \mathbb{Z}_{(p^e-1)/2} : \mathbb{Z}_e$, we obtained a shorter list of candidates for (G, G_α) :

Primitive types Examples A classification of almost simple type

Steps of the classification

 (c) For each pair (G, H) on the second list, H has the form
 H = Z^e_p: K. Analyzing N_G(K), since H is maximal and |K| is
 odd, a (G, 2)-path transitive but not (G, 2)-arc transitive
 graph exists if and only if |N_G(K)| is even.

Not all candidates correspond to a 2-path transitive graph.

For $(G, H) = (M_{23}, \mathbb{Z}_{23}:\mathbb{Z}_{11})$, $(PGL_3(4), 7:3 \times 3)$, or $(PGU_3(5), 7:3 \times 3)$, no *G*-vertex-primitive, (G, 2)-path transitive graph occurs.

Primitive types Examples A classification of almost simple type

Steps of the classification

 (c) For each pair (G, H) on the second list, H has the form
 H = Z^e_p: K. Analyzing N_G(K), since H is maximal and |K| is
 odd, a (G, 2)-path transitive but not (G, 2)-arc transitive
 graph exists if and only if |N_G(K)| is even.

Not all candidates correspond to a 2-path transitive graph.

For $(G, H) = (M_{23}, \mathbb{Z}_{23}:\mathbb{Z}_{11})$, $(PGL_3(4), 7:3 \times 3)$, or $(PGU_3(5), 7:3 \times 3)$, no *G*-vertex-primitive, (G, 2)-path transitive graph occurs.

Primitive types Examples A classification of almost simple type

Steps of the classification

(c) For each pair (G, H) on the second list, H has the form H = Z^e_p: K. Analyzing N_G(K), since H is maximal and |K| is odd, a (G, 2)-path transitive but not (G, 2)-arc transitive graph exists if and only if |N_G(K)| is even.

Not all candidates correspond to a 2-path transitive graph.

For $(G, H) = (M_{23}, \mathbb{Z}_{23}:\mathbb{Z}_{11})$, $(PGL_3(4), 7:3 \times 3)$, or $(PGU_3(5), 7:3 \times 3)$, no *G*-vertex-primitive, (G, 2)-path transitive graph occurs.

Primitive types Examples A classification of almost simple type

Steps of the classification

(c) For each pair (G, H) on the second list, H has the form H = Z^e_p: K. Analyzing N_G(K), since H is maximal and |K| is odd, a (G, 2)-path transitive but not (G, 2)-arc transitive graph exists if and only if |N_G(K)| is even.

Not all candidates correspond to a 2-path transitive graph.

For $(G, H) = (M_{23}, \mathbb{Z}_{23}:\mathbb{Z}_{11})$, $(PGL_3(4), 7:3 \times 3)$, or $(PGU_3(5), 7:3 \times 3)$, no *G*-vertex-primitive, (G, 2)-path transitive graph occurs.

Primitive types Examples A classification of almost simple type

Main result

Theorem

Let Γ be a *G*-vertex-primitive, (G, 2)-path transitive but not (G, 2)-arc transitive graph of valency *k*. Then $k = p^e \equiv 3 \pmod{4}$, where *p* is a prime, and *G* is affine or almost simple. Furthermore, if *G* is almost simple, then soc(G), G_{α} and *k* are given in Table A.

Primitive types Examples A classification of almost simple type

Main result Result table

TABLE A

soc(G)	G_{lpha}	k	Conditions	Remark
Ap	$\mathbb{Z}_{p}:\mathbb{Z}_{(p-1)/2}$	р	p prime, $p \equiv 3 \pmod{4}$	
			and $p eq 7, 11, 23$	
Th	$\mathbb{Z}_{31}:\mathbb{Z}_{15}$	31		
В	$\mathbb{Z}_{31}:\mathbb{Z}_{15}$	31		
	$\mathbb{Z}_{47}:\mathbb{Z}_{23}$	47		
М	$\mathbb{Z}_{59}:\mathbb{Z}_{29}$	59		
	$\mathbb{Z}_{71}:\mathbb{Z}_{35}$	71		
$\mathrm{PSL}_2(q)$	$\mathbb{Z}_p^e:\mathbb{Z}_{(p^e-1)/2}$	q	p prime, $q = p^e \equiv 3 \pmod{4}$	$\Gamma = K_{q+1}$

Half-transitive graphs Future work

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V\Gamma| \ge 5$, then $Aut(\Gamma) \cong AutL(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

- For G =Th, B or M, Aut(F) = G_{1}
- For $G = PSL_2(q)$, $Aut(I) = S_{q+1}$
- For $G = A_p$, $Aut(I) = A_p$ or S_p (depending on g).

Half-transitive graphs Future work

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V\Gamma| \ge 5$, then $Aut(\Gamma) \cong AutL(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

- For G = Th, B or M, $Aut(\Gamma) = G$;
- For $G = PSL_2(q)$, $Aut(\Gamma) = S_{q+1}$;
- For $G = A_p$, $Aut(\Gamma) = A_p$ or S_p (depending on g).

Half-transitive graphs Future work

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V\Gamma| \ge 5$, then $Aut(\Gamma) \cong AutL(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

• For
$$G = Th$$
, B or M, Aut $(\Gamma) = G$;

• For $G = PSL_2(q)$, $Aut(\Gamma) = S_{q+1}$;

• For $G = A_p$, $Aut(\Gamma) = A_p$ or S_p (depending on g).

Half-transitive graphs Future work

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V\Gamma| \ge 5$, then $Aut(\Gamma) \cong AutL(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

- For G = Th, B or M, Aut $(\Gamma) = G$;
- For $G = PSL_2(q)$, $Aut(\Gamma) = S_{q+1}$;
- For $G = A_p$, $Aut(\Gamma) = A_p$ or S_p (depending on g).

Half-transitive graphs Future work

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V\Gamma| \ge 5$, then $Aut(\Gamma) \cong AutL(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

- For G = Th, B or M, Aut $(\Gamma) = G$;
- For $G = PSL_2(q)$, $Aut(\Gamma) = S_{q+1}$;
- For $G = A_p$, $Aut(\Gamma) = A_p$ or S_p (depending on g).

Half-transitive graphs Future work

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V\Gamma| \ge 5$, then $Aut(\Gamma) \cong AutL(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

- For G = Th, B or M, Aut $(\Gamma) = G$;
- For $G = PSL_2(q)$, $Aut(\Gamma) = S_{q+1}$;
- For $G = A_p$, $Aut(\Gamma) = A_p$ or S_p (depending on g).

Half-transitive graphs Future work

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V\Gamma| \ge 5$, then $Aut(\Gamma) \cong AutL(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

• For
$$G = \text{Th}$$
, B or M, $\text{Aut}(\Gamma) = G$;

• For
$$G = \mathrm{PSL}_2(q)$$
, $\mathsf{Aut}(\Gamma) = \mathsf{S}_{q+1}$;

• For $G = A_p$, $Aut(\Gamma) = A_p$ or S_p (depending on g).

Half-transitive graphs Future work

What next

- On vertex biprimitive, 2-path but not 2-arc transitive graphs (recently have been classified by us);
- On vertex primitive, 2-path but not 2-arc transitive graphs, of affine type (it seems that such graphs are rare);
- On vertex quasiprimitive, 2-path but not 2-arc transitive graphs, see if PA and TW examples can be found.

Half-transitive graphs Future work

What next

- On vertex biprimitive, 2-path but not 2-arc transitive graphs (recently have been classified by us);
- On vertex primitive, 2-path but not 2-arc transitive graphs, of affine type (it seems that such graphs are rare);
- On vertex quasiprimitive, 2-path but not 2-arc transitive graphs, see if PA and TW examples can be found.

Half-transitive graphs Future work

- On vertex biprimitive, 2-path but not 2-arc transitive graphs (recently have been classified by us);
- On vertex primitive, 2-path but not 2-arc transitive graphs, of affine type (it seems that such graphs are rare);
- On vertex quasiprimitive, 2-path but not 2-arc transitive graphs, see if PA and TW examples can be found.

Thank you!