Finite Vertex Primitive 2-Path Transitive Graphs

Hua Zhang
School of Mathematics and Statistics University of Western Australia

Symmetries of Graphs and Networks, Slovenija, 2010 (joint work with Caiheng Li)

August 4, 2010

Table of contents

(1) Introduction

- Definitions
- Motivation
(2) Local Structure
- Some simple facts
- Observation
- Structure of point stabilizers
(3) Vertex primitive case

Definitions

Γ an undirected, simple, connected graph with vertex set $V \Gamma$ and edge set $E \Gamma$, and $G \leq A u t \Gamma$.

Definitions
 2-path

Γ an undirected, simple, connected graph with vertex set $V \Gamma$ and edge set $E \Gamma$, and $G \leq A u t \Gamma$.

Definition

Let (α, β, γ) be a 2 -arc of Γ. Then the 2 -path corresponds to (α, β, γ) is defined by identifying (α, β, γ) with (γ, β, α), denoted as $[\alpha, \beta, \gamma]$.

Definitions
 2-path

Γ an undirected, simple, connected graph with vertex set $V \Gamma$ and edge set $E \Gamma$, and $G \leq A u t \Gamma$.

Definition

Let (α, β, γ) be a 2 -arc of Γ. Then the 2 -path corresponds to (α, β, γ) is defined by identifying (α, β, γ) with (γ, β, α), denoted as $[\alpha, \beta, \gamma]$.

Definitions

Γ an undirected, simple, connected graph with vertex set $V \Gamma$ and edge set $E \Gamma$, and $G \leq A u t \Gamma$.

Definition

Let (α, β, γ) be a 2 -arc of Γ. Then the 2 -path corresponds to (α, β, γ) is defined by identifying (α, β, γ) with (γ, β, α), denoted as $[\alpha, \beta, \gamma]$.
$\Gamma(\alpha)=$ the neighborhood of $\alpha, G_{\alpha}^{[1]}=$ the kernel of G_{α} acting on $\Gamma(\alpha), G_{\alpha \beta}^{[1]}:=G_{\alpha}^{[1]} \cap G_{\beta}^{[1]}$.

Definitions

half-transitive, line graph

Definition

> - If Γ is G-vertex transitive and G-edge transitive, but not G-arc transitive, then Γ is called G-half transitive. In case $G=A u t \Gamma$, it is called half-transitive.
> - The line graph $L(\Gamma)$ of Γ is defined as the graph with vertex set $E \Gamma$, such that two vertices e_{1} and e_{2} of $L(\Gamma)$ are adjacent if and only if they are incident in Γ.

Definitions

half-transitive, line graph

Definition

- If Γ is G-vertex transitive and G-edge transitive, but not G-arc transitive, then Γ is called G-half transitive. In case $G=A u t \Gamma$, it is called half-transitive.
- The line graph $L(\Gamma)$ of Γ is defined as the graph with vertex set $E \Gamma$, such that two vertices e_{1} and e_{2} of $L(\Gamma)$ are adjacent if and only if they are incident in Γ.

Definitions

half-transitive, line graph

Definition

- If Γ is G-vertex transitive and G-edge transitive, but not G-arc transitive, then Γ is called G-half transitive. In case $G=A u t \Gamma$, it is called half-transitive.
- The line graph $L(\Gamma)$ of Γ is defined as the graph with vertex set $E \Gamma$, such that two vertices e_{1} and e_{2} of $L(\Gamma)$ are adjacent if and only if they are incident in Γ.

line graph

line graph

Γ

line graph

Motivation

Motivations and Aim

Motivations

- motivation 1: To extend the study of symmetrical graphs, based on: \{2-arc-transitive graphs $\} \subset\{2$-path-transitive graphs $\} \subset\{$ arc-transitive graphs $\}$.
- motivation 2: To construct new half-transitive graphs

The aim is to find a solution for the following problem:

Problem: Classify some special classes of 2-path but not 2-arc transitive graphs (the solution of which will lead to a way of constructing new half-transitive graphs, in our case the specific classes are "vertex-primitive and vertex-biprimitive")

Motivation

Motivations and Aim

Motivations

- motivation 1: To extend the study of symmetrical graphs, based on: \{2-arc-transitive graphs $\} \subset\{2$-path-transitive graphs $\} \subset\{$ arc-transitive graphs $\}$.
- motivation 2: To construct new half-transitive graphs.

The aim is to find a solution for the following problem:

Problem: Classify some special classes of 2-path but not 2-arc transitive graphs (the solution of which will lead to a way of constructing new half-transitive graphs, in our case the specific classes are "vertex-primitive and vertex-biprimitive")

Motivation

Motivations and Aim

Motivations

- motivation 1: To extend the study of symmetrical graphs, based on: \{2-arc-transitive graphs $\} \subset\{2$-path-transitive graphs $\} \subset\{$ arc-transitive graphs $\}$.
- motivation 2: To construct new half-transitive graphs.

The aim is to find a solution for the following problem:

Problem: Classify some special classes of 2-path but not 2-arc transitive graphs (the solution of which will lead to a way of constructing new half-transitive graphs, in our case the specific classes are "vertex-primitive and vertex-biprimitive")

Motivation

Motivations and Aim

Motivations

- motivation 1: To extend the study of symmetrical graphs, based on: \{2-arc-transitive graphs $\} \subset\{2$-path-transitive graphs $\} \subset\{$ arc-transitive graphs $\}$.
- motivation 2: To construct new half-transitive graphs.

The aim is to find a solution for the following problem:

Problem: Classify some special classes of 2-path but not 2-arc transitive graphs (the solution of which will lead to a way of constructing new half-transitive graphs, in our case the specific classes are "vertex-primitive and vertex-biprimitive").

Motivation Historical

Previous work related to 2-path transitive graphs:
(1) A general study of k-path transitive graphs was first carried out by M. D. E. Conder and C. E. Praeger in 1996.
(2) Marušič and Xu revealed the relationship between 1-regular cubic (which is a special case of 2-path transitive) graphs and half-transitive graphs in 1997.

Motivation

Previous work related to 2-path transitive graphs:
(1) A general study of k-path transitive graphs was first carried out by M. D. E. Conder and C. E. Praeger in 1996.
(2) Marušič and Xu revealed the relationship between 1-regular cubic (which is a special case of 2-path transitive) graphs and half-transitive graphs in 1997.

Transitivities of Γ and $L(\Gamma)$

The connection between the transitivity of Γ and the transitivity of $L(\Gamma)(G \leq A u t \Gamma)$.
(i) Γ is $(G, 2)$-path-transitive if and only if $L(\Gamma)$ is G-edge transitive;
(ii) Γ is $(G, 2)$-arc-transitive if and only if $L(\Gamma)$ is G-arc transitive; (iii) Assume that Γ is G-vertex-transitive. Then Γ is

Transitivities of Γ and $L(\Gamma)$

The connection between the transitivity of Γ and the transitivity of $L(\Gamma)(G \leq A u t \Gamma)$.
(i) Γ is $(G, 2)$-path-transitive if and only if $L(\Gamma)$ is G-edge transitive;
(ii) Γ is $(G, 2)$-arc-transitive if and only if $L(\Gamma)$ is G-arc transitive;

Transitivities of Γ and $L(\Gamma)$

The connection between the transitivity of Γ and the transitivity of $L(\Gamma)(G \leq A u t \Gamma)$.
(i) Γ is $(G, 2)$-path-transitive if and only if $L(\Gamma)$ is G-edge transitive;
(ii) Γ is $(G, 2)$-arc-transitive if and only if $L(\Gamma)$ is G-arc transitive;
(iii) Assume that Γ is G-vertex-transitive. Then Γ is ($G, 2$)-path-transitive but not ($G, 2$)-arc-transitive if and only if $L(\Gamma)$ is G-half-transitive.

Observation

A key step of this work is to determine the structure of point stabilizers for 2-path transitive graphs.

Observation

Observation

A key step of this work is to determine the structure of point stabilizers for 2-path transitive graphs.

Observation:
(1) If Γ is a (regular) $(G, 2)$-path-transitive graph, then it is G-arc-transitive.
(2) (Conder and Praeger, 1996) Γ is ($G, 2$)-path transitive but not $(G, 2)$-arc-transitive if and only if $G_{\alpha}^{\Gamma(\alpha)}$ is 2-homogeneous but not 2-transitive.
(3) (W. M. Kantor, 1969) If G is 2-homogeneous but not 2-transitive of degree n, then $\operatorname{ASL}_{1}(q) \leq G \leq A \Gamma L_{1}\left(p^{e}\right)$, and $n=p^{e} \equiv 3(\bmod 4)$ with p prime, e odd.

Observation

A key step of this work is to determine the structure of point stabilizers for 2-path transitive graphs.

Observation:
(1) If Γ is a (regular) $(G, 2)$-path-transitive graph, then it is G-arc-transitive.
(2) (Conder and Praeger, 1996) Γ is $(G, 2)$-path transitive but not $(G, 2)$-arc-transitive if and only if $G_{\alpha}^{\Gamma(\alpha)}$ is 2-homogeneous but not 2-transitive.
(3) (W. M. Kantor, 1969) If G is 2-homogeneous but not

2-transitive of degree n, then $\operatorname{ASL}_{1}(q) \leq G \leq A \Gamma L_{1}\left(p^{e}\right)$, and $n=p^{e} \equiv 3(\bmod 4)$ with p prime, e odd.

Observation

A key step of this work is to determine the structure of point stabilizers for 2-path transitive graphs.

Observation:
(1) If Γ is a (regular) $(G, 2)$-path-transitive graph, then it is G-arc-transitive.
(2) (Conder and Praeger, 1996) Γ is $(G, 2)$-path transitive but not $(G, 2)$-arc-transitive if and only if $G_{\alpha}^{\Gamma(\alpha)}$ is 2-homogeneous but not 2-transitive.
3 (W. M. Kantor, 1969) If G is 2-homogeneous but not 2-transitive of degree n, then $\operatorname{ASL}_{1}(q) \leq G \leq \operatorname{ALL}_{1}\left(p^{e}\right)$, and $n=p^{e} \equiv 3(\bmod 4)$ with p prime, e odd.

Structure of point stabilizers

A result of Weiss: $G_{\alpha \beta}^{[1]}=1$, is used to proof this theorem:

Structure Theorem

Let Γ be a $(G, 2)$-path transitive but not $(G, 2)$-arc transitive graph, where $\mathrm{G} \leq \operatorname{Aut} \Gamma$. Let (α, β) be a arc of Γ. Then either

Structure of point stabilizers

A result of Weiss: $G_{\alpha \beta}^{[1]}=1$, is used to proof this theorem:

Structure Theorem

Let Γ be a $(G, 2)$-path transitive but not $(G, 2)$-arc transitive graph, where $\mathrm{G} \leq \operatorname{Aut} \Gamma$. Let (α, β) be a arc of Γ. Then either
(1) G_{α} is faithful on $\Gamma(\alpha)$, and $G_{\alpha}=G_{\alpha}^{\Gamma(\alpha)} \leq \mathrm{A} \Gamma \mathrm{L}_{1}(q)$, where $q=p^{e} \equiv 3(\bmod 4)$ and p is a prime, or
(2) G_{α} is not faithful on $\Gamma(\alpha)$, and the following hold:

Structure of point stabilizers

A result of Weiss: $G_{\alpha \beta}^{[1]}=1$, is used to proof this theorem:

Structure Theorem

Let Γ be a $(G, 2)$-path transitive but not $(G, 2)$-arc transitive graph, where $\mathrm{G} \leq \operatorname{Aut} \Gamma$. Let (α, β) be a arc of Γ. Then either
(1) G_{α} is faithful on $\Gamma(\alpha)$, and $G_{\alpha}=G_{\alpha}^{\Gamma(\alpha)} \leq \mathrm{A} \Gamma \mathrm{L}_{1}(q)$, where $q=p^{e} \equiv 3(\bmod 4)$ and p is a prime, or
(2) G_{α} is not faithful on $\Gamma(\alpha)$, and the following hold:

Structure of point stabilizers

A result of Weiss: $G_{\alpha \beta}^{[1]}=1$, is used to proof this theorem:

Structure Theorem

Let Γ be a $(G, 2)$-path transitive but not $(G, 2)$-arc transitive graph, where $\mathrm{G} \leq \operatorname{Aut} \Gamma$. Let (α, β) be a arc of Γ. Then either
(1) G_{α} is faithful on $\Gamma(\alpha)$, and $G_{\alpha}=G_{\alpha}^{\Gamma(\alpha)} \leq \mathrm{A} \Gamma \mathrm{L}_{1}(q)$, where $q=p^{e} \equiv 3(\bmod 4)$ and p is a prime, or
(2) G_{α} is not faithful on $\Gamma(\alpha)$, and the following hold:
(a) $G_{\beta}^{[1]} \cong G_{\alpha}^{[1]} \triangleleft G_{\alpha \beta}^{\Gamma(\beta)} \leq \mathbb{Z}_{(q-1) / 2}: \mathbb{Z}_{e}$;

Structure of point stabilizers

A result of Weiss: $G_{\alpha \beta}^{[1]}=1$, is used to proof this theorem:

Structure Theorem

Let Γ be a $(G, 2)$-path transitive but not $(G, 2)$-arc transitive graph, where $\mathrm{G} \leq \operatorname{Aut} \Gamma$. Let (α, β) be a arc of Γ. Then either
(1) G_{α} is faithful on $\Gamma(\alpha)$, and $G_{\alpha}=G_{\alpha}^{\Gamma(\alpha)} \leq \mathrm{A} \Gamma \mathrm{L}_{1}(q)$, where $q=p^{e} \equiv 3(\bmod 4)$ and p is a prime, or
(2) G_{α} is not faithful on $\Gamma(\alpha)$, and the following hold:
(a) $G_{\beta}^{[1]} \cong G_{\alpha}^{[1]} \triangleleft G_{\alpha \beta}^{\Gamma(\beta)} \leq \mathbb{Z}_{(q-1) / 2}: \mathbb{Z}_{e}$;
(b) $G_{\alpha}=\left(G_{\alpha}^{[1]} \times\left(\mathbb{Z}_{p}^{e}: G_{\beta}^{[1]}\right)\right) \cdot O$, and $G_{\alpha \beta}=\left(G_{\alpha}^{[1]} \times G_{\beta}^{[1]}\right) \cdot O$, where $O \cong G_{\alpha \beta}^{\Gamma(\alpha)} /\left(G_{\beta}^{[1]}\right)^{\Gamma(\alpha)}$;

Structure of point stabilizers

A result of Weiss: $G_{\alpha \beta}^{[1]}=1$, is used to proof this theorem:

Structure Theorem

Let Γ be a $(G, 2)$-path transitive but not $(G, 2)$-arc transitive graph, where $\mathrm{G} \leq \operatorname{Aut} \Gamma$. Let (α, β) be a arc of Γ. Then either
(1) G_{α} is faithful on $\Gamma(\alpha)$, and $G_{\alpha}=G_{\alpha}^{\Gamma(\alpha)} \leq \mathrm{A} \Gamma \mathrm{L}_{1}(q)$, where $q=p^{e} \equiv 3(\bmod 4)$ and p is a prime, or
(2) G_{α} is not faithful on $\Gamma(\alpha)$, and the following hold:
(a) $G_{\beta}^{[1]} \cong G_{\alpha}^{[1]} \triangleleft G_{\alpha \beta}^{\Gamma(\beta)} \leq \mathbb{Z}_{(q-1) / 2}: \mathbb{Z}_{e}$;
(b) $G_{\alpha}=\left(G_{\alpha}^{[1]} \times\left(\mathbb{Z}_{p}^{e}: G_{\beta}^{[1]}\right)\right) \cdot O$, and $G_{\alpha \beta}=\left(G_{\alpha}^{[1]} \times G_{\beta}^{[1]}\right) \cdot O$, where $O \cong G_{\alpha \beta}^{\Gamma(\alpha)} /\left(G_{\beta}^{[1]}\right)^{\Gamma(\alpha)}$;
(c) $q(q-1) / 2| | G_{\alpha}^{\Gamma(\alpha)} \mid$, and $\left|G_{\alpha}\right| \left\lvert\, q\left(\frac{(q-1) e}{2}\right)^{2}\right.$. In particular, $2 \nmid\left|G_{\alpha}\right|$.

An application

Primitive type

We focus our attention on the vertex primitive case.

A general construction Let $H<G, H$ a core-free subgroup, g a 2-element. Assume that $g \notin N_{G}(H), g^{2} \in H$, and the action of H on $\left[H: H \cap H^{g}\right]$ by right multiplication is 2-homogeneous but not 2-transitive. Then the graph $\Gamma=\operatorname{Cos}(\mathrm{G}, \mathrm{H}, \mathrm{HgH})$ is ($G, 2$)-path-transitive but not ($G, 2$)-arc-transitive.

Primitive types

Primitive type

We focus our attention on the vertex primitive case.

Proposition

Let Γ be a G-vertex primitive, $(G, 2)$-path transitive but not $(G, 2)$-arc transitive graph, where $G \leq$ Aut Γ. Then G is affine or almost simple, examples exist for each type.

A general construction Let $H<G, H$ a core-free subgroup, g a 2-element. Assume that $g \notin N_{G}(H), g^{2} \in H$, and the action of H on $\left[H: H \cap H^{g}\right]$ by right multiplication is 2-homogeneous but not 2-transitive. Then the graph $\Gamma=\operatorname{Cos}(G, H, H g H)$ is ($G, 2$)-path-transitive but not ($G, 2$)-arc-transitive.

Primitive types

Primitive type

We focus our attention on the vertex primitive case.

Proposition

Let Γ be a G-vertex primitive, $(G, 2)$-path transitive but not $(G, 2)$-arc transitive graph, where $G \leq$ Aut Γ. Then G is affine or almost simple, examples exist for each type.

A general construction Let $H<G, H$ a core-free subgroup, g a 2-element. Assume that $g \notin N_{G}(H), g^{2} \in H$, and the action of H on $\left[H: H \cap H^{g}\right]$ by right multiplication is 2-homogeneous but not 2-transitive. Then the graph $\Gamma=\operatorname{Cos}(G, H, H g H)$ is ($G, 2$)-path-transitive but not ($G, 2$)-arc-transitive.

Primitive type

We focus our attention on the vertex primitive case.

Proposition

Let Γ be a G-vertex primitive, $(G, 2)$-path transitive but not $(G, 2)$-arc transitive graph, where $G \leq$ Aut Γ. Then G is affine or almost simple, examples exist for each type.

A general construction Let $H<G, H$ a core-free subgroup, g a 2-element. Assume that $g \notin N_{G}(H), g^{2} \in H$, and the action of H on [$H: H \cap H^{g}$] by right multiplication is 2-homogeneous but not 2-transitive. Then the graph $\Gamma=\operatorname{Cos}(G, H, H g H)$ is
$(G, 2)$-path-transitive but not $(G, 2)$-arc-transitive.

examples

Example

Let $\Gamma=K_{8}, G=\mathbb{Z}_{2}^{3}:\left(\mathbb{Z}_{7}: \mathbb{Z}_{3}\right), G_{\alpha}=\mathbb{Z}_{7}: \mathbb{Z}_{3}$. Then Γ is vertex-primitive, $(G, 2)$-path transitive but not $(G, 2)$-arc transitive, of affine type.

Example

Let $G=M$, the Monster simple group. Then G contains a maximal subgroup $H=\mathbb{Z}_{59}: \mathbb{Z}_{29}:=K: L$. By the ATLAS, the order $\left|N_{G}(L)\right|$ is even, thus there exists a 2-element $g \in N_{G}(L)$ Furthermore, H acts 2-homogeneously but not 2-transitively on $\left[H: H \cap H^{g}\right]$, so the graph $\Gamma=\operatorname{Cos}(G, H, H g H)$ is (G, 2)-path transitive but not $(G, 2)$-arc transitive, of almost simple type.

examples

Example

Let $\Gamma=K_{8}, G=\mathbb{Z}_{2}^{3}:\left(\mathbb{Z}_{7}: \mathbb{Z}_{3}\right), G_{\alpha}=\mathbb{Z}_{7}: \mathbb{Z}_{3}$. Then Γ is vertex-primitive, $(G, 2)$-path transitive but not $(G, 2)$-arc transitive, of affine type.

Example

Let $G=M$, the Monster simple group. Then G contains a maximal subgroup $H=\mathbb{Z}_{59}: \mathbb{Z}_{29}:=K: L$. By the ATLAS, the order $\left|N_{G}(L)\right|$ is even, thus there exists a 2-element $g \in N_{G}(L)$. Furthermore, H acts 2-homogeneously but not 2-transitively on [$H: H \cap H^{g}$], so the graph $\Gamma=\operatorname{Cos}(G, H, H g H)$ is ($\left.G, 2\right)$-path transitive but not ($G, 2$)-arc transitive, of almost simple type.

A classification

For AS type, a classification is obtained by using the result of "Primitive groups with soluble stabilizers", consists of 7 tables.

G_{0}	H_{0}
A_{5}	$\mathrm{S}_{4} \cap G_{0},\left(\mathrm{~S}_{3} \times \mathrm{S}_{2}\right) \cap \mathrm{G}_{0}$
A_{6}	$\left(S_{4} \times S_{2}\right) \cap G_{0},\left(S_{3} \backslash S_{2}\right) \cap G_{0},\left(S_{2} \backslash S_{3}\right) \cap G_{0}$
A_{7}	$\left(S_{4} \times S_{3}\right) \cap G_{0}$
A_{8}	$\left(\mathrm{S}_{4} \backslash \mathrm{~S}_{2}\right) \cap G_{0}$
S_{8}	$S_{2} \backslash S_{4}$
A_{9}	$\left(S_{3} \backslash S_{3}\right) \cap G_{0}, A G L_{2}(3) \cap G_{0}$
A_{12}	$\left(\mathrm{S}_{4} \backslash \mathrm{~S}_{3}\right) \cap G_{0},\left(\mathrm{~S}_{3} \backslash \mathrm{~S}_{4}\right) \cap G_{0}$
A_{16}	$\left(S_{4} \backslash S_{4}\right) \cap G_{0}$
A_{p}	$\mathbb{Z}_{p}: \mathbb{Z}_{\frac{p-1}{2}}, p \neq 7,11,17,23$
S_{p}	$\mathbb{Z}_{p}: \mathbb{Z}_{p-1}{ }^{2}, p=7,11,17,23$

Steps of the classification

(a) From the seven tables, find out all maximal subgroups with odd order, we obtained a list (not so long);
(b) From the above list, read off all maximal subgroups with the form $\mathbb{Z}_{p}^{e}: L$ or $\mathbb{Z}_{p}^{e} \times L: L$, where $L \leq \mathbb{Z}_{\left(p^{e}-1\right) / 2}: \mathbb{Z}_{e}$, we obtained a shorter list of candidates for $\left(G, G_{\alpha}\right)$:

Steps of the classification

(a) From the seven tables, find out all maximal subgroups with odd order, we obtained a list (not so long);
(b) From the above list, read off all maximal subgroups with the form $\mathbb{Z}_{p}^{e}: L$ or $\mathbb{Z}_{p}^{e} \times L: L$, where $L \leq \mathbb{Z}_{\left(p^{e}-1\right) / 2}: \mathbb{Z}_{e}$, we obtained a shorter list of candidates for (G, G_{α}):

Steps of the classification

(a) From the seven tables, find out all maximal subgroups with odd order, we obtained a list (not so long);
(b) From the above list, read off all maximal subgroups with the form $\mathbb{Z}_{p}^{e}: L$ or $\mathbb{Z}_{p}^{e} \times L: L$, where $L \leq \mathbb{Z}_{\left(p^{e}-1\right) / 2}: \mathbb{Z}_{e}$, we obtained a shorter list of candidates for (G, G_{α}):

Steps of the classification

(a) From the seven tables, find out all maximal subgroups with odd order, we obtained a list (not so long);
(b) From the above list, read off all maximal subgroups with the form $\mathbb{Z}_{p}^{e}: L$ or $\mathbb{Z}_{p}^{e} \times L: L$, where $L \leq \mathbb{Z}_{\left(p^{e}-1\right) / 2}: \mathbb{Z}_{e}$, we obtained a shorter list of candidates for (G, G_{α}):
$\left(\mathrm{M}_{23}, 23: 11\right),\left(\mathrm{PGL}_{3}(4), 7: 3 \times 3\right),\left(\mathrm{PGU}_{3}(5), 7: 3 \times 3\right),(\mathrm{Th}, 31: 15)$,
(B, 31:15), (B, 47:23), (M, 59:29), (M, 71:35), ($\left.\mathrm{A}_{p}, \mathbb{Z}_{p}: \mathbb{Z}_{(p-1) / 2}\right)$,
$p \equiv 3(\bmod 4)$, and $p \neq 7,11,23$, and
$\left(\mathrm{PSL}_{2}(q) \cdot\langle\tau\rangle, \mathbb{Z}_{p}^{e}: \mathbb{Z}_{\left(p^{e}-1\right) / 2} \cdot\langle\tau\rangle\right)$, where $p^{e} \equiv 3(\bmod 4)$, and
$\langle\tau\rangle \leq \mathbb{Z}_{e}$.

Steps of the classification

(c) For each pair (G, H) on the second list, H has the form $H=\mathbb{Z}_{p}^{e}: K$. Analyzing $N_{G}(K)$, since H is maximal and $|K|$ is odd, a ($G, 2$)-path transitive but not $(G, 2)$-arc transitive graph exists if and only if $\left|N_{G}(K)\right|$ is even.

Not all candidates correspond to a 2-path transitive graph.

For $(G, H)=\left(\mathrm{M}_{23}, \mathbb{Z}_{23}: \mathbb{Z}_{11}\right),\left(\mathrm{PGL}_{3}(4), 7: 3 \times 3\right)$, or
$\left(\mathrm{PGU}_{3}(5), 7: 3 \times 3\right)$, no G-vertex-primitive, $(G, 2)$-path transitive
graph occurs.

By exhausting all the pairs we obtained a complete classification.

Steps of the classification

(c) For each pair (G, H) on the second list, H has the form $H=\mathbb{Z}_{p}^{e}: K$. Analyzing $N_{G}(K)$, since H is maximal and $|K|$ is odd, a ($G, 2$)-path transitive but not $(G, 2)$-arc transitive graph exists if and only if $\left|N_{G}(K)\right|$ is even.

Not all candidates correspond to a 2-path transitive graph.

For $(G, H)=\left(\mathrm{M}_{23}, \mathbb{Z}_{23}: \mathbb{Z}_{11}\right),\left(\mathrm{PGL}_{3}(4), 7: 3 \times 3\right)$, or
$\left(\mathrm{PGU}_{3}(5), 7: 3 \times 3\right)$, no G-vertex-primitive, $(G, 2)$-path transitive
graph occurs.

By exhausting all the pairs we obtained a complete classification.

Steps of the classification

(c) For each pair (G, H) on the second list, H has the form $H=\mathbb{Z}_{p}^{e}: K$. Analyzing $N_{G}(K)$, since H is maximal and $|K|$ is odd, a ($G, 2$)-path transitive but not ($G, 2$)-arc transitive graph exists if and only if $\left|N_{G}(K)\right|$ is even.

Not all candidates correspond to a 2-path transitive graph.

For $(G, H)=\left(\mathrm{M}_{23}, \mathbb{Z}_{23}: \mathbb{Z}_{11}\right),\left(\mathrm{PGL}_{3}(4), 7: 3 \times 3\right)$, or
$\left(\mathrm{PGU}_{3}(5), 7: 3 \times 3\right)$, no G-vertex-primitive, $(G, 2)$-path transitive graph occurs.

By exhausting all the pairs we obtained a complete classification.

Steps of the classification

(c) For each pair (G, H) on the second list, H has the form $H=\mathbb{Z}_{p}^{e}: K$. Analyzing $N_{G}(K)$, since H is maximal and $|K|$ is odd, a ($G, 2$)-path transitive but not ($G, 2$)-arc transitive graph exists if and only if $\left|N_{G}(K)\right|$ is even.

Not all candidates correspond to a 2-path transitive graph.
For $(G, H)=\left(\mathrm{M}_{23}, \mathbb{Z}_{23}: \mathbb{Z}_{11}\right),\left(\mathrm{PGL}_{3}(4), 7: 3 \times 3\right)$, or
$\left(\mathrm{PGU}_{3}(5), 7: 3 \times 3\right)$, no G-vertex-primitive, $(G, 2)$-path transitive graph occurs.

By exhausting all the pairs we obtained a complete classification.

Main result

Theorem

Let Γ be a G-vertex-primitive, $(G, 2)$-path transitive but not $(G, 2)$-arc transitive graph of valency k. Then $k=p^{e} \equiv 3(\bmod 4)$, where p is a prime, and G is affine or almost simple. Furthermore, if G is almost simple, then $\operatorname{soc}(G), G_{\alpha}$ and k are given in Table A.

An application

Primitive types
Examples
A classification of almost simple type

Main result
 Result table

TABLE A

$\operatorname{soc}(G)$	G_{α}	k	Conditions	Remark
A_{p}	$\mathbb{Z}_{p}: \mathbb{Z}_{(p-1) / 2}$	p	p prime, $p \equiv 3(\bmod 4)$ and $p \neq 7,11,23$	
Th	$\mathbb{Z}_{31}: \mathbb{Z}_{15}$	31		
B	$\mathbb{Z}_{31}: \mathbb{Z}_{15}$	31		
	$\mathbb{Z}_{47}: \mathbb{Z}_{23}$	47		
M	$\mathbb{Z}_{59}: \mathbb{Z}_{29}$	59		
	$\mathbb{Z}_{71}: \mathbb{Z}_{35}$	71		
$\operatorname{PSL}_{2}(q)$	$\mathbb{Z}_{p}^{e}: \mathbb{Z}_{\left(p^{e}-1\right) / 2}$	q	p prime, $q=p^{e} \equiv 3(\bmod 4)$	$\Gamma=K_{q+1}$

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V \Gamma| \geq 5$, then $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut} L(\Gamma)$. we have

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V \Gamma| \geq 5$, then $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut} L(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

- For $G=T h, B$ or $M, \operatorname{Aut}(\Gamma)=G$;
- For $G=\mathrm{PSL}_{2}(q), \operatorname{Aut}(\Gamma)=\mathrm{S}_{q+1}$;
- For $G=A_{p}, \operatorname{Aut}(\Gamma)=\mathrm{A}_{\mathrm{p}}$ or S_{p} (depending on g)

In particular, for $G=T h, B, M$ or A_{p} with $\operatorname{Aut}(\Gamma)=A_{p}$, the line graph of Γ is half-transitive

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V \Gamma| \geq 5$, then $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut} L(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

- For $G=\mathrm{Th}, \mathrm{B}$ or $\mathrm{M}, \operatorname{Aut}(\Gamma)=G$;
- For $G=\operatorname{PSL}_{2}(q), \operatorname{Aut}(\Gamma)=S_{q+1}$;
- For $G=A_{p}, \operatorname{Aut}(\Gamma)=A_{\mathrm{p}}$ or S_{p} (depending on g).

In narticular for $G=$ Th B M or A_{p} with $A_{\text {nit }}(\Gamma)=A_{\text {, }}$, the line graph of Γ is half-transitive

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V \Gamma| \geq 5$, then $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut} L(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

- For $G=\mathrm{Th}, \mathrm{B}$ or $\mathrm{M}, \operatorname{Aut}(\Gamma)=G$;
- For $G=\operatorname{PSL}_{2}(q), \operatorname{Aut}(\Gamma)=\mathrm{S}_{q+1}$;
- For $G=A_{p}, \operatorname{Aut}(\Gamma)=\mathrm{A}_{\mathrm{p}}$ or S_{p} (depending on g).

In particular, for $G=T h, B, M$ or A_{p} with $\operatorname{Aut}(\Gamma)=\mathrm{A}_{\mathrm{p}}$, the line graph of Γ is half-transitive.

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V \Gamma| \geq 5$, then $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut} L(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

- For $G=\mathrm{Th}, \mathrm{B}$ or $\mathrm{M}, \operatorname{Aut}(\Gamma)=G$;
- For $G=\operatorname{PSL}_{2}(q), \operatorname{Aut}(\Gamma)=\mathrm{S}_{q+1}$;
- For $G=A_{p}, \operatorname{Aut}(\Gamma)=\mathrm{A}_{\mathrm{p}}$ or S_{p} (depending on g).

In particular, for $G=T h, B, M$ or A_{p} with $\operatorname{Aut}(\Gamma)=A_{p}$, the line graph of Γ is half-transitive.

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V \Gamma| \geq 5$, then $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut} L(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

- For $G=\mathrm{Th}, \mathrm{B}$ or $\mathrm{M}, \operatorname{Aut}(\Gamma)=G$;
- For $G=\operatorname{PSL}_{2}(q), \operatorname{Aut}(\Gamma)=\mathrm{S}_{q+1}$;
- For $G=A_{p}, \operatorname{Aut}(\Gamma)=\mathrm{A}_{\mathrm{p}}$ or S_{p} (depending on g).

In particular, for $G=T h, B, M$ or A_{p} with $\operatorname{Aut}(\Gamma)=A_{p}$, the line graph of Γ is half-transitive.

Automorphism groups and Half-transitive graphs

To construct half-transitive graphs, need to determine the automorphism groups of the graphs in Table A, then combining this with a result of Whitney (1932): if $|V \Gamma| \geq 5$, then $\operatorname{Aut}(\Gamma) \cong \operatorname{Aut} L(\Gamma)$. we have

Theorem

Let Γ be a graph in Table A. Then the following statements hold:

- For $G=\mathrm{Th}, \mathrm{B}$ or $\mathrm{M}, \operatorname{Aut}(\Gamma)=G$;
- For $G=\operatorname{PSL}_{2}(q), \operatorname{Aut}(\Gamma)=\mathrm{S}_{q+1}$;
- For $G=A_{p}, \operatorname{Aut}(\Gamma)=\mathrm{A}_{\mathrm{p}}$ or S_{p} (depending on g).

In particular, for $G=\mathrm{Th}, \mathrm{B}, M$ or A_{p} with $\operatorname{Aut}(\Gamma)=\mathrm{A}_{\mathrm{p}}$, the line graph of Γ is half-transitive.

What next

(1) On vertex biprimitive, 2-path but not 2-arc transitive graphs (recently have been classified by us);
(2) On vertex primitive, 2-path but not 2-arc transitive graphs, of affine type (it seems that such graphs are rare);
(3) On vertex quasinrimitive, 2-nath but not 2-arc transitive graphs, see if PA and TW examples can be found

What next

(1) On vertex biprimitive, 2-path but not 2-arc transitive graphs (recently have been classified by us);
(2) On vertex primitive, 2-path but not 2-arc transitive graphs, of affine type (it seems that such graphs are rare);
(3) On vertex quasiprimitive, 2-path but not 2-arc transitive graphs, see if PA and TW examples can be found.

What next

(1) On vertex biprimitive, 2-path but not 2-arc transitive graphs (recently have been classified by us);
(2) On vertex primitive, 2-path but not 2-arc transitive graphs, of affine type (it seems that such graphs are rare);
(3) On vertex quasiprimitive, 2-path but not 2-arc transitive graphs, see if PA and TW examples can be found.

The end

Thank you!

