TETRAVALENT ONE-REGULAR GRAPHS OF ORDER 4p²

Cui Zhang

University of Primorska

cui.zhang@pint.upr.si

This is a joint work with Yanquan Feng, Klavdija Kutnar and Dragan Marušič

6 August 2010

イロト 不得 トイヨト イヨト

1 / 15

- Definitions
- Motivation
- Main result
- Essential ingredients in the proof of main result

• An **automorphism** of a graph X = (V, E) is an isomorphism of X with itself.

Thus each **automorphism** α of X is a permutation of the vertex set V which preserves adjacency.

• An s-arc in a graph X is an ordered (s + 1)-tuple $(v_0, v_1, \dots, v_{s-1}, v_s)$ of vertices of X such that v_{i-1} is adjacent to v_i for $1 \le i \le s$, and also $v_{i-1} \ne v_{i+1}$ for $1 \le i \le s - 1$.

• An **automorphism** of a graph X = (V, E) is an isomorphism of X with itself.

Thus each **automorphism** α of X is a permutation of the vertex set V which preserves adjacency.

• An s-arc in a graph X is an ordered (s + 1)-tuple $(v_0, v_1, \dots, v_{s-1}, v_s)$ of vertices of X such that v_{i-1} is adjacent to v_i for $1 \le i \le s$, and also $v_{i-1} \ne v_{i+1}$ for $1 \le i \le s - 1$.

Definitions

Different types of transitivity

- A graph is **vertex-transitive** if its automorphism group acts transitively on vertices.
- A graph is **edge-transitive** if its automorphism group acts transitively on edges.
- A graph is **arc-transitive** (also called **symmetric**) if its automorphism group acts transitively on arcs.
- If automorphism group acts regularly on the set of *s*-arcs of *X* then *X* is said to be **s-regular**.
- A graph is **one-regular** if its automorphism group acts regularly on the set of its arcs.

Covering graph

A graph \widetilde{X} is called a **covering** of a graph X with projection $p: \widetilde{X} \to X$ if there is a surjection $p: V(\widetilde{X}) \to V(X)$ such that

$$p|_{N_{\widetilde{X}}(\widetilde{v})}: N_{\widetilde{X}}(\widetilde{v}) \to N_X(v)$$

is a bijection for any vertex $v \in V(X)$ and $\tilde{v} \in p^{-1}(v)$.

A **covering** X of X with a projection p is said to be a **regular** K-**covering** if there is a semiregular subgroup K of $\operatorname{Aut}(\widetilde{X})$ such that the graph X is isomorphic to the quotient graph \widetilde{X}/K , say by h, and the quotient map $\widetilde{X} \to \widetilde{X}/K$ is the composition ph of p and h.

Covering graph

A graph \widetilde{X} is called a **covering** of a graph X with projection $p: \widetilde{X} \to X$ if there is a surjection $p: V(\widetilde{X}) \to V(X)$ such that

$$p|_{N_{\widetilde{X}}(\widetilde{v})}:N_{\widetilde{X}}(\widetilde{v})\to N_X(v)$$

is a bijection for any vertex $v \in V(X)$ and $\tilde{v} \in p^{-1}(v)$.

A covering \widetilde{X} of X with a projection p is said to be a **regular** *K*-covering if there is a semiregular subgroup K of $\operatorname{Aut}(\widetilde{X})$ such that the graph X is isomorphic to the quotient graph \widetilde{X}/K , say by h, and the quotient map $\widetilde{X} \to \widetilde{X}/K$ is the composition ph of p and h.

Tetravalent one-regular graphs

Research in one-regular graphs is interesting from two points of view:

- First, because of the connection to regular maps, in particular to the so-called *chiral maps* (see, for example, [1, 3, 4, 5]). Namely, the underlying graphs of chiral maps admit a one-regular group action with a cyclic vertex stabilizer.
- Second, one may argue that one-regular graphs are interesting in their own right if one is after a description of all arc-transitive graphs of a particular kind. For some classes of Cayley graphs, for example circulants, this has been achieved, with others such as Cayley graphs of dihedral group, all 2-arc-transitive graphs are completely classified in [6] but arc-transitivity is an open problem even for this particular class of graphs.

The current situation

A complete classification of tetravalent one-regular graphs of order p, $pq (p \neq q)$ and p^2 is know. In particular, a tetravalent one-regular graph of order p or $pq (p \neq q)$ or p^2 is a circulant, due to Cheng, Oxley, Praeger, Wang and Xu. A classification of such graphs can be easily obtained from [9].

Also, Zhou and Feng classified tetravalent one-regular graph of order 2pq, see[11].

Tetravalent one-regular graphs of order $4p^2$

Our result

A complete classification of tetravalent one-regular graphs of order $4p^2$, p a prime.

Theorem

Let p be a prime. Then a tetravalent graph X of order $4p^2$ is one-regular if and only if it is isomorphic to one of the graphs listed in the table below. Furthermore, all the graphs listed in this table are pairwise non-isomorphic.

Row	X	V(X)	$\operatorname{Aut}(X)$
1	$BW_{12}(5, 1, 5)$	36	$G_{36} \rtimes \mathbb{Z}_2^2$
2	GPS2(4, 3, (0 1):(1 2))	36	$ \operatorname{Aut}(X) = 144$
3	$\mathcal{NC}^{0}_{4p^2}$	$4p^2, p > 7,$	given in
		$p{\equiv}{\pm}1 \pmod{8}$	[8, Lemma 8.4]
4	$\mathcal{NC}^{1}_{4p^{2}}$	$4p^2, p > 7,$	given in
	· F	or $p \equiv 1 \text{ or } 3 \pmod{8}$	[8, Lemma 8.7]
5	$CA^0_{4p^2}$	$4p^2, p \equiv 1 \pmod{4}$	$(\mathbb{Z}_{2p^2} \times \mathbb{Z}_2) \rtimes \mathbb{Z}_4$
6	$\mathcal{CA}^{1}_{4p^{2}}$	$4p^2, p > 2$	$(\mathbb{Z}_{4p} \times \mathbb{Z}_p) \rtimes \mathbb{Z}_2^2$
7	$CN_{4p^2}^2$	$4p^2, p \equiv 1 \pmod{4}$	$G_{4p^2}^3 \rtimes \mathbb{Z}_4$

Table: Tetravalent one-regular graphs of order $4p^2$.

The essential ingredients in the proof

- The order of the vertex stabilizer of a tetravalent one-regular graph X is 4, and thus its automorphism group is of order 4 · |V(X)|.
- P. Potočnik and S. Wilson, A census of edge-transitive tetravalent graphs, http://jan.ucc.nau.edu/ swilson/C4Site/index.html. This census was used to prove the theorem for p ≤ 3.
- We use basic group theory, combinatorial techniques, and covering techniques, to show that a Sylow *p*-subgroup *P*, $p \ge 5$, of the automorphism group *A* of a tetravalent one-regular graph of order $4p^2$ is normal in *A*. And therefore orbits of *P* give an *A*-invariant partition.

The essential ingredients in the proof

- The order of the vertex stabilizer of a tetravalent one-regular graph X is 4, and thus its automorphism group is of order 4 · |V(X)|.
- P. Potočnik and S. Wilson, A census of edge-transitive tetravalent graphs, http://jan.ucc.nau.edu/ swilson/C4Site/index.html. This census was used to prove the theorem for p ≤ 3.
- We use basic group theory, combinatorial techniques, and covering techniques, to show that a Sylow *p*-subgroup *P*, $p \ge 5$, of the automorphism group *A* of a tetravalent one-regular graph of order $4p^2$ is normal in *A*. And therefore orbits of *P* give an *A*-invariant partition.

The essential ingredients in the proof

- The order of the vertex stabilizer of a tetravalent one-regular graph X is 4, and thus its automorphism group is of order 4 · |V(X)|.
- P. Potočnik and S. Wilson, A census of edge-transitive tetravalent graphs, http://jan.ucc.nau.edu/ swilson/C4Site/index.html. This census was used to prove the theorem for p ≤ 3.
- We use basic group theory, combinatorial techniques, and covering techniques, to show that a Sylow *p*-subgroup *P*, $p \ge 5$, of the automorphism group *A* of a tetravalent one-regular graph of order $4p^2$ is normal in *A*. And therefore orbits of *P* give an *A*-invariant partition.

Wielandt's theorem

Let p be a prime and let P be a Sylow p-subgroup of a permutation group G acting on a set Ω . Let $w \in \Omega$. If p^m divides the length of the G-orbit containing w, then p^m also divides the length of the P-orbit containing w.

The quotient graph X/P of a one-regular tetravalent graph X of order $4p^2$ with respect to the orbits of a Sylow *p*-subgroup *P*, $p \ge 5$, of its automorphism group *A* is a cycle of length 4.

• If P is cyclic, then we get graph in row 5.

Wielandt's theorem

Let p be a prime and let P be a Sylow p-subgroup of a permutation group G acting on a set Ω . Let $w \in \Omega$. If p^m divides the length of the G-orbit containing w, then p^m also divides the length of the P-orbit containing w.

The quotient graph X/P of a one-regular tetravalent graph X of order $4p^2$ with respect to the orbits of a Sylow *p*-subgroup *P*, $p \ge 5$, of its automorphism group *A* is a cycle of length 4.

• If P is cyclic, then we get graph in row 5.

Row	Х	V(X)	$\operatorname{Aut}(X)$
5	$CA^{1}_{4p^{2}}$	$4p^2, p > 2$	$(\mathbb{Z}_{4p} \times \mathbb{Z}_p) \rtimes \mathbb{Z}_2^2$

- If P is elementary-abelian then:
 - If *P* is a minimal normal subgroup of *A*, then, [8, Theorem 1.2] implies that *X* is one of the graphs listed in rows 3 and 4.

ſ	Row	X	V(X)	$\operatorname{Aut}(X)$
	3	$\mathcal{NC}^{0}_{4p^2}$	$4p^2$, $p > 7$,	given in
		۰ <i>p</i>	$p{\equiv}{\pm}1 \pmod{8}$	[8, Lemma 8.4]
ſ	4	$\mathcal{NC}^{1}_{4p^{2}}$	$4p^2, p > 7,$	given in
		Ψp	or $p \equiv 1 \text{ or } 3 \pmod{8}$	[8, Lemma 8.7]

• If *P* is not a minimal normal subgroup of *A*, then a minimal normal subgroup *N* of *A* is isomorphic to \mathbb{Z}_p . Considering the quotient graph X_N of *X* relative to the orbits of *N*, we have that $|V(X_N)| = 4p$. Then, by a 'reduction' theorem which is deduced from [7, Theorem 1.1], we have that either

(a) X_N is a cycle of length 4p, or

(b) N acts semiregularly on V(X), X_N is a tetravalent connected G/N-arc-transitive graph and X is a regular cover of X_N .

Main result

In case (a), again applying the theorem [8, Theorem 1.2], we get that X is one of the graphs listed in rows 5 and 6.

Row	Х	V(X)	$\operatorname{Aut}(X)$
5	$CA^0_{4p^2}$	$4p^2, p \equiv 1 \pmod{4}$	$(\mathbb{Z}_{2p^2} \times \mathbb{Z}_2) \rtimes \mathbb{Z}_4$
6	$CA^{1}_{4p^{2}}$	$4p^2, p > 2$	$(\mathbb{Z}_{4p} \times \mathbb{Z}_p) \rtimes \mathbb{Z}_2^2$

In case (b), X is a covering graph of a symmetric graph of order 4*p*. By [10, Theorem 4.1], there are six tetravalent symmetric graphs of order 4*p*: $K_{4,4}$, $C_{2p}[2K_1]$, CA_{4p}^0 , CA_{4p}^1 , C(2, p, 2) and g_{28} .

Then with the use of graph-coverings techniques, we get that X is one of the graphs listed in rows 6 and 7.

In case (a), again applying the theorem [8, Theorem 1.2], we get that X is one of the graphs listed in rows 5 and 6.

Row	Х	V(X)	$\operatorname{Aut}(X)$
5	$CA^0_{4p^2}$	$4p^2, p \equiv 1 \pmod{4}$	$(\mathbb{Z}_{2p^2} \times \mathbb{Z}_2) \rtimes \mathbb{Z}_4$
6	$CA^{1}_{4p^{2}}$	$4p^2, p > 2$	$(\mathbb{Z}_{4p} \times \mathbb{Z}_p) \rtimes \mathbb{Z}_2^2$

In case (b), X is a covering graph of a symmetric graph of order 4*p*. By [10, Theorem 4.1], there are six tetravalent symmetric graphs of order 4*p*: $K_{4,4}$, $C_{2p}[2K_1]$, CA_{4p}^0 , CA_{4p}^1 , C(2, p, 2) and g_{28} .

Then with the use of graph-coverings techniques, we get that X is one of the graphs listed in rows 6 and 7.

Row	X	V(X)	$\operatorname{Aut}(X)$
6	$CA^1_{4p^2}$	$4p^2, p > 2$	$(\mathbb{Z}_{4p} \times \mathbb{Z}_p) \rtimes \mathbb{Z}_2^2$
7	$CN_{4p^2}^2$	$4p^2, p \equiv 1 \pmod{4}$	$G_{4p^2}^3 \rtimes \mathbb{Z}_4$

- [1] M.D.E. Conder, On symmetries of Cayley graphs and the graphs underlying regular maps, *J. Algebra* **321** (2009), 3112–3127.
- [2] M.D.E. Conder and C.E. Praeger, Remarks on path-transitivity on finite graphs, *European J. Combin.* **17** (1996), 371–378.

[3] R. Cori and A. Machi, Maps, hypermaps and their automorphisms: a survey I. *Expo. Math.* **10** (1992), 403–427.

[4] R. Cori and A. Machi, Maps, hypermaps and their automorphisms: a survey II. *Expo. Math.* **10** (1992), 429-447.

[5] R. Cori and A. Machi, Maps, hypermaps and their automorphisms: a survey III. Expo. Math. 10 (1992), 449- 467.

- [6] S. F. Du, A. Malnič and D. Marušič, Classification of 2-arc-transitive dihedrants, J. Combin. Theory Ser. B 98 (2008), 1349–1372.
- [7] A. Gardiner and C. E. Praeger, On 4-valent symmetric graphs, European J. Combin. 15 (1994), 375-381.

[8] A. Gardiner and C. E. Praeger, A characterization of certain families of 4-valent symmetric graphs, European J. Combin. 15 (1994), 383–397.

- [9] M. Y. Xu, A note on one-regular graphs, Chinese Sci. Bull. 45 (2000), 2160–2162.
- [10] J.X. Zhou, Tetravalent s-transitive graphs of order 4p, Discrete Math. 309 (2009), 6081-6086.

[11] J.X.Zhou and Y-Q.Feng, Tetravalent one-regular graphs of order 2pq, J. Algebraic Combin. 29 (2009), 457-471.

Thank you!

15 / 15