TETRAVALENT ONE-REGULAR GRAPHS OF ORDER 4p ${ }^{2}$

Cui Zhang

University of Primorska
cui.zhang@pint.upr.si

This is a joint work with
Yanquan Feng, Klavdija Kutnar and Dragan Marušič

6 August 2010

Outline

- Definitions
- Motivation
- Main result
- Essential ingredients in the proof of main result

Definitions

- An automorphism of a graph $X=(V, E)$ is an isomorphism of X with itself.

Thus each automorphism α of X is a permutation of the vertex set V which preserves adjacency.

Definitions

- An automorphism of a graph $X=(V, E)$ is an isomorphism of X with itself.

Thus each automorphism α of X is a permutation of the vertex set V which preserves adjacency.

- An s-arc in a graph X is an ordered $(s+1)$-tuple ($v_{0}, v_{1}, \cdots, v_{s-1}, v_{s}$) of vertices of X such that v_{i-1} is adjacent to v_{i} for $1 \leq i \leq s$, and also $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$.

Different types of transitivity

- A graph is vertex-transitive if its automorphism group acts transitively on vertices.
- A graph is edge-transitive if its automorphism group acts transitively on edges.
- A graph is arc-transitive (also called symmetric) if its automorphism group acts transitively on arcs.
- If automorphism group acts regularly on the set of s-arcs of X then X is said to be s-regular.
- A graph is one-regular if its automorphism group acts regularly on the set of its arcs.

Definitions

Covering graph
A graph \widetilde{X} is called a covering of a graph X with projection $p: \widetilde{X} \rightarrow X$ if there is a surjection $p: V(\widetilde{X}) \rightarrow V(X)$ such that

$$
\left.p\right|_{N_{\tilde{x}}(\tilde{v})}: N_{\tilde{x}}(\tilde{v}) \rightarrow N_{X}(v)
$$

is a bijection for any vertex $v \in V(X)$ and $\tilde{v} \in p^{-1}(v)$.

A covering \widetilde{X} of X with a projection p is said to be a regular K-covering if there is a semiregular subgroun K of Ant (X) such that the graph X is isomorphic to the quotient graph X / K, say by

Definitions

Covering graph

A graph \widetilde{X} is called a covering of a graph X with projection $p: \widetilde{X} \rightarrow X$ if there is a surjection $p: V(\widetilde{X}) \rightarrow V(X)$ such that

$$
\left.p\right|_{N_{\tilde{x}}(\tilde{v})}: N_{\tilde{X}}(\tilde{v}) \rightarrow N_{X}(v)
$$

is a bijection for any vertex $v \in V(X)$ and $\tilde{v} \in p^{-1}(v)$.

A covering \widetilde{X} of X with a projection p is said to be a regular K-covering if there is a semiregular subgroup K of $\operatorname{Aut}(X)$ such that the graph X is isomorphic to the quotient graph X / K, say by h, and the quotient $\operatorname{map} \widetilde{X} \rightarrow \widetilde{X} / K$ is the composition $p h$ of p and h.

Motivation

Tetravalent one-regular graphs

Research in one-regular graphs is interesting from two points of view:

- First, because of the connection to regular maps, in particular to the so-called chiral maps (see, for example, [1, 3, 4, 5]). Namely, the underlying graphs of chiral maps admit a one-regular group action with a cyclic vertex stabilizer.
- Second, one may argue that one-regular graphs are interesting in their own right if one is after a description of all arc-transitive graphs of a particular kind. For some classes of Cayley graphs, for example circulants, this has been achieved, with others such as Cayley graphs of dihedral group, all 2-arc-transitive graphs are completely classified in [6] but arc-transitivity is an open problem even for this particular class of graphs.

Motivation

The current situation

A complete classification of tetravalent one-regular graphs of order p, $p q(p \neq q)$ and p^{2} is know. In particular, a tetravalent one-regular graph of order p or $p q(p \neq q)$ or p^{2} is a circulant, due to Cheng, Oxley, Praeger, Wang and Xu. A classification of such graphs can be easily obtained from [9].
Also, Zhou and Feng classified tetravalent one-regular graph of order $2 p q$, see[11].

Tetravalent one-regular graphs of order $4 p^{2}$

Our result
A complete classification of tetravalent one-regular graphs of order $4 p^{2}, p$ a prime.

Main result

Theorem

Let p be a prime. Then a tetravalent graph X of order $4 p^{2}$ is one-regular if and only if it is isomorphic to one of the graphs listed in the table below. Furthermore, all the graphs listed in this table are pairwise non-isomorphic.

Row	X	$V(X) \mid$	Aut(X)
1	$\mathcal{B L}^{12}(5,1,5)$	36	$G_{36} \rtimes \mathbb{Z}_{2}^{2}$
2	$\mathcal{G P S 2}(4,3,(01):(12))$	36	$\|\operatorname{Aut}(X)\|=144$
3	$\mathcal{N C}{ }_{4 p^{2}}^{0}$	$\begin{gathered} 4 p^{2}, p>7 \\ p \equiv \pm 1(\bmod 8) \end{gathered}$	given in [8, Lemma 8.4]
4	$\mathcal{N C}{ }_{4 p^{2}}^{1}$	$4 p^{2}, p>7$ or $p \equiv 1$ or $3(\bmod 8)$	given in [8, Lemma 8.7]
5	$\mathcal{C} \mathcal{A}_{4 p^{2}}^{0}$	$4 p^{2}, p \equiv 1(\bmod 4)$	$\left(\mathbb{Z}_{2 p^{2}} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{4}$
6	$\mathcal{C} \mathcal{A}_{4 p^{2}}^{1}$	$4 p^{2}, p>2$	$\left(\mathbb{Z}_{4 p} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{2}^{2}$
7	$\mathcal{C N}{ }_{4 p^{2}}$	$4 p^{2}, p \equiv 1(\bmod 4)$	$G_{4 p^{2}}^{3} \rtimes \mathbb{Z}_{4}$

Table: Tetravalent one-regular graphs of order $4 p^{2}$.

The essential ingredients in the proof

- The order of the vertex stabilizer of a tetravalent one-regular graph X is 4 , and thus its automorphism group is of order $4 \cdot|V(X)|$.

The essential ingredients in the proof

- The order of the vertex stabilizer of a tetravalent one-regular graph X is 4 , and thus its automorphism group is of order $4 \cdot|V(X)|$.
- P. Potočnik and S . Wilson, A census of edge-transitive tetravalent graphs, http://j an. ucc.nau. edu/ swilson//c4Site/index.htm1. This census was used to prove the theorem for $p \leq 3$.
- We use basic group theory, combinatorial techniques, and covering technimues to show that a Sivown n-suhoroun $P \quad n>5$ of the automorphism group A of a tetravalent one-regular graph of order $4 p^{2}$ is normal in A. And therefore orbits of P give an A-invariant partition

The essential ingredients in the proof

- The order of the vertex stabilizer of a tetravalent one-regular graph X is 4 , and thus its automorphism group is of order $4 \cdot|V(X)|$.
- P. Potočnik and S . Wilson, A census of edge-transitive tetravalent graphs, http://jan.ucc.nau.edu/ swi1son//c4site/index.htm1. This census was used to prove the theorem for $p \leq 3$.
- We use basic group theory, combinatorial techniques, and covering techniques, to show that a Sylow p-subgroup $P, p \geq 5$, of the automorphism group A of a tetravalent one-regular graph of order $4 p^{2}$ is normal in A. And therefore orbits of P give an A-invariant partition.

The essential ingredients in the proof

Wielandt's theorem

Let p be a prime and let P be a Sylow p-subgroup of a permutation group G acting on a set Ω. Let $w \in \Omega$. If p^{m} divides the length of the G-orbit containing w, then p^{m} also divides the length of the P-orbit containing w.

The essential ingredients in the proof

Wielandt's theorem

Let p be a prime and let P be a Sylow p-subgroup of a permutation group G acting on a set Ω. Let $w \in \Omega$. If p^{m} divides the length of the G-orbit containing w, then p^{m} also divides the length of the P-orbit containing w.

The quotient graph X / P of a one-regular tetravalent graph X of order $4 p^{2}$ with respect to the orbits of a Sylow p-subgroup P, $p \geq 5$, of its automorphism group A is a cycle of length 4.

- If P is cyclic, then we get graph in row 5 .

Row	X	$\|V(X)\|$	$\operatorname{Aut}(X)$
5	$\mathcal{C A}$	$4 p^{2}$	$4 p^{2}, p>2$

Main result

- If P is elementary-abelian then:
- If P is a minimal normal subgroup of A, then, [8, Theorem 1.2] implies that X is one of the graphs listed in rows 3 and 4.

Row 3	X $\mathcal{N C}$ $4 p^{2}$	$\|V(X)\|$	Aut (X)
		$4 p^{2}, p>7$,	
$p \equiv \pm 1(\bmod 8)$	given in		
[8, Lemma 8.4]			
4	$\mathcal{N C}_{4 p^{2}}^{1}$	$4 p^{2}, p>7$, or $p \equiv 1$ or $3(\bmod 8)$	given in
[8, Lemma 8.7]			

- If P is not a minimal normal subgroup of A, then a minimal normal subgroup N of A is isomorphic to \mathbb{Z}_{p}. Considering the quotient graph X_{N} of X relative to the orbits of N, we have that $\left|V\left(X_{N}\right)\right|=4 p$. Then, by a 'reduction' theorem which is deduced from [7, Theorem 1.1], we have that either
(a) X_{N} is a cycle of length $4 p$, or
(b) N acts semiregularly on $V(X), X_{N}$ is a tetravalent connected G / N-arc-transitive graph and X is a regular cover of X_{N}.

Main result

In case (a), again applying the theorem [8, Theorem 1.2], we get that X is one of the graphs listed in rows 5 and 6 .

Row	X	$\|V(X)\|$	$\operatorname{Aut}(X)$
5	$\mathcal{C} \mathcal{A}_{4 p^{2}}^{0}$	$4 p^{2}, p \equiv 1(\bmod 4)$	$\left(\mathbb{Z}_{2 p^{2}} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{4}$
6	$\mathcal{C} \mathcal{A}_{4 p^{2}}^{1}$	$4 p^{2}, p>2$	$\left(\mathbb{Z}_{4 p} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{2}^{2}$

Main result

In case (a), again applying the theorem [8, Theorem 1.2], we get that X is one of the graphs listed in rows 5 and 6 .

Row	X	$\|V(X)\|$	$\operatorname{Aut}(X)$
5	$\mathcal{C} \mathcal{A}_{4 p^{2}}^{0}$	$4 p^{2}, p \equiv 1(\bmod 4)$	$\left(\mathbb{Z}_{2 p^{2}} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{4}$
6	$\mathcal{C} \mathcal{A}_{4 p^{2}}^{1}$	$4 p^{2}, p>2$	$\left(\mathbb{Z}_{4 p} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{2}^{2}$

In case (b), X is a covering graph of a symmetric graph of order $4 p$. By [10, Theorem 4.1], there are six tetravalent symmetric graphs of order $4 p: K_{4,4}, \mathcal{C}_{2 p}\left[2 K_{1}\right], \mathcal{C} \mathcal{A}_{4 p}^{0}, \mathcal{C} \mathcal{A}_{4 p}^{1}, \mathcal{C}(2, p, 2)$ and \mathfrak{g}_{28}.
Then with the use of graph-coverings techniques, we get that X is one of the graphs listed in rows 6 and 7 .

Row	X	$\|V(X)\|$	$\operatorname{Aut}(X)$
6	$\mathcal{C} \mathcal{A}_{4 p^{2}}^{1}$	$4 p^{2}, p>2$	$\left(\mathbb{Z}_{4 p} \times \mathbb{Z}_{p}\right) \rtimes \mathbb{Z}_{2}^{2}$
7	$\mathcal{C} \mathcal{N}_{4 p^{2}}^{2}$	$4 p^{2}, p \equiv 1(\bmod 4)$	$G_{4 p^{2}}^{3} \times \mathbb{Z}_{4}$

[1] M.D.E. Conder, On symmetries of Cayley graphs and the graphs underlying regular maps, J. Algebra 321 (2009), 3112-3127.
[2] M.D.E. Conder and C.E. Praeger, Remarks on path-transitivity on finite graphs, European J. Combin. 17 (1996), 371-378.
[3] R. Cori and A. Machi, Maps, hypermaps and their automorphisms: a survey I. Expo. Math. 10 (1992), 403-427.
[4] R. Cori and A. Machi, Maps, hypermaps and their automorphisms: a survey II. Expo. Math. 10 (1992), 429-447.
[5] R. Cori and A. Machi, Maps, hypermaps and their automorphisms: a survey III. Expo. Math. 10 (1992), 449- 467.
[6] S. F. Du, A. Malnič and D. Marušič, Classification of 2-arc-transitive dihedrants, J. Combin. Theory Ser. B 98 (2008), 1349-1372.
[7] A. Gardiner and C. E. Praeger, On 4-valent symmetric graphs, European J. Combin. 15 (1994), 375-381.
[8] A. Gardiner and C. E. Praeger, A characterization of certain families of 4-valent symmetric graphs, European J. Combin. 15 (1994), 383-397.
[9] M. Y. Xu, A note on one-regular graphs, Chinese Sci. Bull. 45 (2000), 2160-2162.
[10] J.X. Zhou, Tetravalent s-transitive graphs of order 4p, Discrete Math. 309 (2009), 6081-6086.
[11] J.X.Zhou and Y-Q.Feng, Tetravalent one-regular graphs of order 2pq, J. Algebraic Combin. 29 (2009), 457-471.

Thank you!

