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Half-edge-transitive graph

Definition

X : a simple graph (no loops or multiple edges).
V (X ), E(X ), A(X ): the vertex set, the edge set and the arc
set.
X is vertex-transitive, edge-transitive or
arc-transitive(symmetric): Aut(X ) is transitive on V (X ),
E(X ) or A(X ).
X is half-arc-transitive: Aut(X ) is transitive on V (X ), E(X ),
but not on A(X ).
X is half-edge-transitive: A vertex-transitive graph X is
half-edge-transitive if X is not edge-transitive and Aut(X )
has two orbits with the same length on the arc set A(X ).
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Half-edge-transitive graph

Symmetric graphs and half-arc-transitive graphs have been
investigated widely.

It is well known that the lexicographic product Cn[2K1] is
symmetric and Aut(Cn[2K1]) = Zn

2 o D2n, where Cn is the
graph of cycle of length n. Thus, tetravalent symmetric
graphs can have arbitrary large stabilizers.
Marušič [24] proved that connected tetravalent
half-arc-transitive graphs can have arbitrary large
stabilizers.
In fact, connected tetravalent half-edge-transitive graphs
also can have arbitrary large stabilizers.
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Cayley graph

Cayley graph

G a finite group, S ⊆ G, 1 6∈ S, S = S−1 = {s−1 | s ∈ S}.

Cayley graph Cay(G, S) on G with respect to S:
vertex set V (Cay(G, S)) = G,
edge set E(Cay(G, S)) = {{g, sg} | g ∈ G, s ∈ S}.
Cay(G, S) is connected ⇔ G = 〈S〉.
Right regular representation R(G) of G:
R(G) = {R(g) | g ∈ G}, where R(g) : x 7→ xg, ∀x ∈ G.
Clearly, R(G) ≤ Aut(Cay(G, S)).
A graph X is a Cayley graph on G ⇔ Aut(X ) has a
subgroup isomorphic to G, acting regularly on vertices.
A Cayley graph Cay(G, S) is said to be normal if
Aut(Cay(G, S)) contains R(G) as a normal subgroup.
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Cayley graph

normal Cayley graph

Wang et al. [32] obtained all disconnected normal Cayley
graphs. Let p be a prime.

p: A Cayley graph of order p is normal if the graph is
neither the empty graph nor the complete graph Kp.
2p: Du et al. [9] determined the normality of Cayley graphs
of order 2p.
p2: Dobson et al. [8] determined the normality of Cayley
graphs of order p2.
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Cayley graph

normal Cayley graph on non-abelian simple group

Let Cay(G, S) be a connected cubic Cayley graph on a
non-abelian simple group G.

Praeger [25] proved that if NAut(Cay(G,S))(R(G)) is
transitive on edges, then the Cayley graph Cay(G, S) is
normal.
Fang et al. [11] proved that the vast majority of connected
cubic Cayley graphs on non-abelian simple groups are
normal.

Fang et al. [12] gave a characterization of a class of tetravalent
edge-transitive Cayley graphs of finite non-abelian simple
groups in terms of normality.
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Cayley graph

For more results on the normality of Cayley graphs, we refer the
reader to [15, 18, 20, 21, 33, 39].

In view of the above results, one may conclude that most
connected Cayley graphs are normal. It is nature to give a
question: are there infinite families of connected non-normal
Cayley graphs of valency 3 or 4 on non-abelian simple
groups????

For valency 4, the answer is yes.

For valency 3???
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Theorem
Let X = Cay(G, S) be a connected tetravalent graph on finite
group G. Let S = {s1, s2, s3, s4} and A = Aut(X ). Suppose that
there exists an involution h in G \ S such that s1 ∈ CG(h),
s2 = s1h, sh

3 = s4 and |G : 〈h, s3, s4〉| = m ≥ 2. Then,

(1) A contains a subgroup H such that H ∼= Zm
2 o R(G), and

H1
∼= Zm−1

2 o Z2;
(2) X is non-normal, and X is symmetric or

half-edge-transitive;
(3) If 〈h, s3, s4〉 � D8 then X is half-edge-transitive.
(4) If m is a prime then X is half-edge-transitive except for

X ∼= Q4, the 4-dimensional hypercube, or
X ∼= Cay(S4, {(1 2), (3 4), (1 3), (2 4)}).
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Example 1

Let p ≡ 1 (mod 4) be a prime and let Ap be the alternating
group on Ω = {1, 2, · · · , p}. Take

s1 = (1 2) · · · (p−3
2

p−1
2 )(p+1

2 )(p+3
2

p+5
2 ) · · · (p − 1 p),

s2 = (1 p − 1)(2 p)(3 p − 3)(4 p − 2) · · · (p−1
2

p+5
2 )(p+1

2 ),

s1
3 = (1 2)(3 p)(4 p − 1) · · · (p−1

2
p+7

2 )(p+1
2

p+5
2 )(p+3

2 ),

s1
4 = (p p − 1)(p − 2 1)(p − 3 2), · · · (p+3

2
p−5

2 )(p+1
2

p−3
2 )(p−1

2 ),

s2
3 = (1 p)(2 3) · · · (p−1

2
p+1

2 )(p+3
2 )(p+5

2
p+7

2 ) · · · (p − 2 p − 1),

s2
4 = (1 p)(2 3) · · · (p−5

2
p−3

2 )(p−1
2 )(p+1

2
p+3

2 ) · · · (p − 2 p − 1),
s3

3 = (1 3 5 · · · p − 2 p),
s3

4 = (1 p p − 2 · · · 5 3),
s4

3 = (1 2 3 · · · p − 1 p),
s4

4 = (1 p p − 1 · · · 3 2).

Set Si = {s1, s2, si
3, si

4} for i = 1, 2, 3, 4. Then
Xi = Cay(Ap, Si) is half-edge-transitive and non-normal.
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p = 5

Let p = 5, a = (1 3)(2 4), b = (1 4)(2 3), c = (1 2)(4 5) and
d = (1 4)(2 5). Then

S1 = {c, d , (1 2)(3 5), (1 3)(4 5)} ∼= {a, b, (1 3)(2 5), (1 5)(2 4)},
S2 = {c, d , (1 5)(2 3), (1 5)(3 4)} ∼= {a, b, (1 2)(3 5), (1 2)(4 5)},
S3 = {c, d , (1 3 5), (1 5 3)} ∼= {a, b, (1 2 5), (1 5 2)},
S4 = {c, d , (1 2 3 4 5), (1 5 4 3 2)} ∼= {a, b, (1 3 5 4 2), (1 2 4 5 3)}.

From [40], up to isomorphic, there are only four tetravalent
non-normal Cayley graphs on alternating group A5,
corresponding the four graphs above. Further,
26 | |Aut(Cay(A5, S1))1| = |Aut(Cay(A5, S4))1|, and
210 | |Aut(Cay(A5, S2))1| = |Aut(Cay(A5, S3))1|. By Magma [4],
|Aut(Cay(A5, S1))| = |Aut(Cay(A5, S4))| = 26 · 60 and
|Aut(Cay(A5, S2))| = |Aut(Cay(A5, S3))| = 211 · 60, it means that
the lower bound is sharp.
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normal Cayley graphs on alternating group A5

Xu and Xu [40] determined the normality of connected
Cayley graphs of valency 3 and 4 on alternating group A5.
Zhou and Feng [41] determined the normality of
connected Cayley graphs of valency 5 on alternating group
A5. Furthermore, they gave two sufficient conditions for
non-normal Cayley graphs, and constructed some infinite
families of non-normal Cayley graphs of valency 5.
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Example 2

Let p = 8k + 7 be a prime, k a positive integer with
k 6= 1 (mod 3) and let Ap be the alternating group on
Ω = {1, 2, · · · , p}. Take
s1 = (1 3 2 4) · · · (p− 6 p− 4 p− 5 p− 3)(p− 2 p− 1)(p), s3 =
(1 2)(3 4 5 6) · · · (p−8 p−7 p−6 p−5)(p−4 p−2 p−3 p)(p−1),
s2 = s−1

1 and s4 = s−1
3 .

Then X = Cay(Ap, {s1, s2, s3, s4}) is half-edge-transitive and
non-normal.

In this case, D ∼= D8 and m = p!
16 .
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Example 3

Let n = 8k + 6 be an integer with k 6= 1 (mod 3) and let An be
the alternating group on Ω = {1, 2, · · · , n}. Take

s1 = (1 n+2
2 )(2 3 n n − 1)(4 5 n − 2 n − 3) · · · (n−2

2
n
2

n+6
2

n+4
2 ),

s2 = (1 n+2
2 )(2 n − 1 n 3)(4 n − 3 n − 2 5) · · · (n−2

2
n+4

2
n+6

2
n
2),

s1
3 = (2 3 4 · · · n),

s1
4 = (2 n · · · 4 3),

s2
3 = (1 n+6

2 )(2 3)(4 5) · · · (n−2
2

n
2)(n+4

2
n+10

2 )(n+8
2

n+14
2 ) · · · (n − 3 n),

s2
4 = (1 n−2

2 )(2 5)(4 7) · · · (n−6
2

n
2)(n+4

2
n+6

2 )(n+8
2

n+10
2 ) · · · (n − 1 n).

Set Si = {s1, s2, si
3, si

4} for i = 1, 2. Then Xi = Cay(An, Si) is
half-edge-transitive and non-normal.
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Cay(S4, {(1 2), (3 4), (1 3), (2 4)})
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Corollary

Tetravalent half-edge-transitive graphs can have arbitrary
large stabilizer.
There exist infinite families of tetravalent non-normal
Cayley graphs on non-abelian simple groups.
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Ideas for the proof

Set D = 〈h, s3, s4〉. Then D ∼= D2n for some integer n > 2. Note
that s1 ∈ CG(h), s2 = s1h, sh

3 = s4 and |G : 〈h, s3, s4〉| = m ≥ 2.

Fact 1: o(s1) = 2 or o(s1) = 4 and h = s2
1; o(s3) = 2 or

o(s3) > 2 and s4 = s−1
3 .

Fact 2: D C G ⇔ m = 2.
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(1) Zm
2 o R(G) ≤ Aut(X )

Let Dgi , i = 0, 1, · · · , m − 1, be all cosets of D in G such that
g0 = 1 and g1 = s1. For a given coset Dgi , define the
permutation αi on G by

xαi =

{
hx x ∈ Dgi ,

x x /∈ Dgi .
(1)

Then αi ∈ Aut(X ). Set T = 〈α0, α1, · · · , αm−1〉. Then T is
normalized by R(G) and T ∼= Zm

2 . Thus,
H = T o R(G) ∼= Zm

2 o R(G) ≤ Aut(X ) and H1
∼= Zm−1

2 o Z2.

By (1), the order of A1 has a lower bound 2m.
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(2) non-normal

m > 2: Then α2 fixes {s1, s2, s3, s4} pointwise. Thus
α2 ∈ A1, but α2 /∈ Aut(G, S).
m = 2: Then D C G. Thus α1 ∈ A1, but α1 /∈ Aut(G, S).

Thus, X is non-normal.
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(3) symmetric or half-edge-transitive

o(s1) = 2: (1, s1)
R(s1) = (s1, 1), (s1, 1)R(s1) = (1, s1);

o(s1) = 4: (1, s1)
α1R(s1) = (s1, 1), (s1, 1)α1R(s1) = (1, s1).

o(s3) = 2: (1, s3)
R(s3) = (s3, 1), (s3, 1)R(s3) = (1, s3);

o(s3) > 2: (1, s3)
α0R(s3) = (s3, 1), (s3, 1)α0R(s3) = (1, s3).

Thus, A has at most two orbits on the arc set of X and if it has
two orbits, they have the same length.

It follows that X is symmetric or half-edge-transitive.
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(4) if D � D8 then X is half-edge-transitive

D � D8.
Then either there is one 4-cycle passing through the edge
{1, s1} and no 4-cycle passing through the edge {1, s3}, or
there are three 4-cycles passing through the edge {1, s1} and
two 4-cycles passing through the edge {1, s3}.

Thus, X is half-edge-transitive.
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D ∼= D8 and m is a prime.

m = 2: Then G = D8 × Z2 = 〈a, b, c|a4 = b2 = c2 =
[a, c] = [b, c] = 1, ab = a−1〉 and S = {a, a−1, c, bc} or
{ab, a−1b, c, bc}. Thus, X ∼= Q4(the 4-dimensional
hypercube) is symmetric.
m ≥ 3: Then G = S4 and
S = {(1 2), (3 4), (1 2 3 4), (1 4 3 2)} or
{(1 2), (3 4), (1 3), (2 4)}, or
{(1 3 2 4), (1 4 2 3), (1 2 3 4), (1 4 3 2)}. Thus,
X ∼= Cay(S4, {(1 2), (3 4), (1 3), (2 4)}) is symmetric.
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Tetravalent non-normal Cayley graphs on A6

Theorem
Let Cay(A6, S) be a connected tetravalent non-normal Cayley
graph on alternating group A6. Then
S ∼= {(1 4)(2 3 6 5), (1 4)(2 5 6 3), (2 3 4 5 6), (2 6 5 4 3)} or
{(1 4)(2 3 6 5), (1 4)(2 5 6 3), (1 2)(5 6), (1 6)(2 3)}.
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subdegrees of PSU(4, 2)

Lemma
Let m > 1 be a positive integer dividing 180, and let PSU(4, 2)
has a transitive action of degree m. Then m = 40, 45, 90, or
120, Further,

(1) if m = 40, then the subdegrees of PSU(4, 2) are 1, 12, 27;
(2) if m = 45, then the subdegrees of PSU(4, 2) are 1, 12, 32;
(3) if m = 90, then the subdegrees of PSU(4, 2) are

1, 1, 24, 32, 32;
(4) if m = 120, then the subdegrees of PSU(4, 2) are

1, 1, 1, 27, 27, 27, 36 or 1, 2, 27, 36, 54.
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Ideas for the proof

Let G = A6 and X = Cay(G, S) be a connected tetravalent
non-normal Cayley graph on G. Set A = Aut(X ). By Fang et
al. [13], we have the three cases:

Case 1: A is almost simple and soc(A) contains G as a proper
subgroup and is transitive on V (X ).

Case 2: G o Inn(G) ≤ A = (G o Aut(G, S)) · 2 and S is a
self-inverse union of G-conjugacy classes.

Case 3: A is not quasiprimitive on V (X ) and there is a maximal
intransitive normal subgroup K of A such that one of the
following holds:
(a) A/K is almost simple, soc(A/K ) contains GK/K ∼= G and

is transitive on V (XK );
(b) A/K = AGL3(2), G = PSL(2, 7) and XK = K8;
(c) soc(A/K ) ∼= T × T and GK/K ∼= G is a diagonal subgroup

of soc(A/K ).
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Ideas for the proof

case 3 (a) holds. that is, A is not quasiprimitive on V (X ) and
there is a maximal intransitive normal subgroup K of A such
that A/K is almost simple, soc(A/K ) contains GK/K ∼= G and
is transitive on V (XK ). Let Bi be the orbits of K on V (X ).

XK has valency 3 or 4.
PSU(4, 2) cannot be an subgroup of Aut(XK ).
soc(A/K ) = A6, |Bi | = 2 and XK has valency 3.
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Ideas for the proof

Now, we assume that B1 = {1, h} and S = {s1, s2, s3, s4}
where h is an involution. Then we have s1 ∈ CG(h), s2 = s1h
and sh

3 = s4.

Since all involutions in A6 are conjugate, one may take
h = (2 6)(3 5). By magma, we can get
S ∼= {(1 4)(2 3 6 5), (1 4)(2 5 6 3), (2 3 4 5 6), (2 6 5 4 3)} or
{(1 4)(2 3 6 5), (1 4)(2 5 6 3), (1 2)(5 6), (1 6)(2 3)}.
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