A classification of sharp tridiagonal pairs

Tatsuro Ito Kazumasa Nomura Paul Terwilliger

Overview

This talk concerns a linear algebraic object called a tridiagonal pair.

Overview

This talk concerns a linear algebraic object called a tridiagonal pair.

We will describe its features such as the eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

Overview

This talk concerns a linear algebraic object called a tridiagonal pair.

We will describe its features such as the eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

We will then define an algebra \mathbb{T} by generators and relations, and prove a theorem about its structure called the μ-Theorem.

Overview

This talk concerns a linear algebraic object called a tridiagonal pair.

We will describe its features such as the eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

We will then define an algebra \mathbb{T} by generators and relations, and prove a theorem about its structure called the μ-Theorem.

We will use the μ-Theorem to obtain a Classification Theorem for sharp tridiagonal pairs.

Leonard pairs

We recall the notion of a Leonard pair. To do this, we first recall what it means for a matrix to be tridiagonal.

Leonard pairs

We recall the notion of a Leonard pair. To do this, we first recall what it means for a matrix to be tridiagonal.

The following matrices are tridiagonal.

$$
\left(\begin{array}{llll}
2 & 3 & 0 & 0 \\
1 & 4 & 2 & 0 \\
0 & 5 & 3 & 3 \\
0 & 0 & 3 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
2 & 3 & 0 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 5
\end{array}\right) .
$$

Leonard pairs

We recall the notion of a Leonard pair. To do this, we first recall what it means for a matrix to be tridiagonal.

The following matrices are tridiagonal.

$$
\left(\begin{array}{llll}
2 & 3 & 0 & 0 \\
1 & 4 & 2 & 0 \\
0 & 5 & 3 & 3 \\
0 & 0 & 3 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
2 & 3 & 0 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 5
\end{array}\right) .
$$

Tridiagonal means each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal.

Leonard pairs

We recall the notion of a Leonard pair. To do this, we first recall what it means for a matrix to be tridiagonal.

The following matrices are tridiagonal.

$$
\left(\begin{array}{llll}
2 & 3 & 0 & 0 \\
1 & 4 & 2 & 0 \\
0 & 5 & 3 & 3 \\
0 & 0 & 3 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
2 & 3 & 0 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 5
\end{array}\right)
$$

Tridiagonal means each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal.

The tridiagonal matrix on the left is irreducible. This means each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

We now define a Leonard pair. From now on \mathbb{F} will denote a field.

The Definition of a Leonard Pair

We now define a Leonard pair. From now on \mathbb{F} will denote a field.

Definition

Let V denote a vector space over \mathbb{F} with finite positive dimension. By a Leonard pair on V, we mean a pair of linear transformations $A: V \rightarrow V$ and $A^{*}: V \rightarrow V$ which satisfy both conditions below.
(1) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A^{*} is diagonal.
(2) There exists a basis for V with respect to which the matrix representing A^{*} is irreducible tridiagonal and the matrix representing A is diagonal.

Notation

According to a common notational convention A^{*} denotes the conjugate-transpose of A.

Notation

According to a common notational convention A^{*} denotes the conjugate-transpose of A.

We are not using this convention.

Notation

According to a common notational convention A^{*} denotes the conjugate-transpose of A.

We are not using this convention.
In a Leonard pair A, A^{*} the linear transformations A and A^{*} are arbitrary subject to (1), (2) above.

Example of a Leonard pair

For any integer $d \geq 0$ the pair

$$
\begin{aligned}
& A=\left(\begin{array}{cccccc}
0 & d & 0 & & & 0 \\
1 & 0 & d-1 & & & \\
& 2 & \cdot & \cdot & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & 1 \\
0 & & & & d & 0
\end{array}\right), \\
& A^{*}=\operatorname{diag}(d, d-2, d-4, \ldots,-d)
\end{aligned}
$$

is a Leonard pair on the vector space \mathbb{F}^{d+1}, provided the characteristic of \mathbb{F} is 0 or an odd prime greater than d.

Example of a Leonard pair

For any integer $d \geq 0$ the pair

$$
\begin{aligned}
& A=\left(\begin{array}{cccccc}
0 & d & 0 & & & 0 \\
1 & 0 & d-1 & & & \\
& 2 & \cdot & \cdot & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & 1 \\
\mathbf{0} & & & & d & 0
\end{array}\right), \\
& A^{*}=\operatorname{diag}(d, d-2, d-4, \ldots,-d)
\end{aligned}
$$

is a Leonard pair on the vector space \mathbb{F}^{d+1}, provided the characteristic of \mathbb{F} is 0 or an odd prime greater than d.

Reason: There exists an invertible matrix P such that $P^{-1} A P=A^{*}$ and $P^{2}=2^{d} l$.

Leonard pairs and orthogonal polynomials

There is a natural correspondence between the Leonard pairs and a family of orthogonal polynomials consisting of the following types:
q-Racah,
q-Hahn, dual q-Hahn, q-Krawtchouk, dual q-Krawtchouk, quantum q-Krawtchouk, affine q-Krawtchouk, Racah, Hahn, dual-Hahn, Krawtchouk, Bannai/Ito, orphans $(\operatorname{char}(\mathbb{F})=2$ only $)$.
This family coincides with the terminating branch of the Askey scheme of orthoonnal nolvnomials

Tatsuro Ito, Kazumasa Nomura, Paul Terwilliger
A classification of sharp tridiagonal pairs

Recommended reading

The theory of Leonard pairs is summarized in
P. Terwilliger: An algebraic approach to the Askey scheme of orthogonal polynomials. Orthogonal polynomials and special functions, 255-330, Lecture Notes in Math., 1883, Springer, Berlin, 2006; arXiv:math.QA/0408390.

We now consider a generalization of a Leonard pair called a tridiagonal pair.

Tridiagonal pairs

We now consider a generalization of a Leonard pair called a tridiagonal pair.

A tridiagonal pair is defined as follows.

Tridiagonal pairs

We now consider a generalization of a Leonard pair called a tridiagonal pair.

A tridiagonal pair is defined as follows.
As before, V will denote a vector space over \mathbb{F} with finite positive dimension.

Tridiagonal pairs

We now consider a generalization of a Leonard pair called a tridiagonal pair.

A tridiagonal pair is defined as follows.
As before, V will denote a vector space over \mathbb{F} with finite positive dimension.

As before, we consider a pair of linear transformations $A: V \rightarrow V$ and $A^{*}: V \rightarrow V$.

Definition of a Tridiagonal pair

We say the pair A, A^{*} is a TD pair on V whenever (1)-(4) hold below.
(1) Each of A, A^{*} is diagonalizable on V.
(2) There exists an ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A such that

$$
A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1} \quad(0 \leq i \leq d)
$$

where $V_{-1}=0, V_{d+1}=0$.
(3) There exists an ordering $\left\{V_{i}^{*}\right\}_{i=0}^{\delta}$ of the eigenspaces of A^{*} such that

$$
A V_{i}^{*} \subseteq V_{i-1}^{*}+V_{i}^{*}+V_{i+1}^{*} \quad(0 \leq i \leq \delta)
$$

where $V_{-1}^{*}=0, V_{\delta+1}^{*}=0$.
(9) There is no subspace $W \subseteq V$ such that $A W \subseteq W$ and $A^{*} W \subseteq W$ and $W \neq 0$ and $W \neq V$.

Referring to our definition of a TD pair, it turns out $d=\delta$; we call this common value the diameter of the pair.

Leonard pairs and Tridiagonal pairs

We mentioned that a tridiagonal pair is a generalization of a Leonard pair.

Leonard pairs and Tridiagonal pairs

We mentioned that a tridiagonal pair is a generalization of a Leonard pair.

A Leonard pair is the same thing as a tridiagonal pair for which the eigenspaces V_{i} and V_{i}^{*} all have dimension 1 .

Origins

The concept of a TD pair originated in algebraic graph theory, or more precisely, the theory of Q-polynomial distance-regular graphs. See
T. Ito, K. Tanabe, and P. Terwilliger. Some algebra related to P and Q-polynomial association schemes, in: Codes and Association Schemes (Piscataway NJ, 1999), Amer. Math. Soc., Providence RI, 2001, pp. 167-192; arXiv:math.C0/0406556.

When working with a TD pair, it is helpful to consider a closely related object called a TD system.

We will define a TD system over the next few slides.

Standard orderings

Referring to our definition of a TD pair,
An ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A is called standard whenever

$$
A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1} \quad(0 \leq i \leq d)
$$

where $V_{-1}=0, V_{d+1}=0$.

Standard orderings

Referring to our definition of a TD pair,
An ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A is called standard whenever

$$
A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1} \quad(0 \leq i \leq d)
$$

where $V_{-1}=0, V_{d+1}=0$.
In this case, the ordering $\left\{V_{d-i}\right\}_{i=0}^{d}$ is also standard and no further ordering is standard.

Standard orderings

Referring to our definition of a TD pair,
An ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A is called standard whenever

$$
A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1} \quad(0 \leq i \leq d)
$$

where $V_{-1}=0, V_{d+1}=0$.
In this case, the ordering $\left\{V_{d-i}\right\}_{i=0}^{d}$ is also standard and no further ordering is standard.

A similar discussion applies to A^{*}.

Primitive idempotents

Given an eigenspace of a diagonalizable linear transformation, the corresponding primitive idempotent E is the projection onto that eigenspace.

Primitive idempotents

Given an eigenspace of a diagonalizable linear transformation, the corresponding primitive idempotent E is the projection onto that eigenspace.

In other words $E-I$ vanishes on the eigenspace and E vanishes on all the other eigenspaces.

Definition

By a TD system on V we mean a sequence

$$
\Phi=\left(A ;\left\{E_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)
$$

that satisfies the following:
(1) A, A^{*} is a TD pair on V.
(2) $\left\{E_{i}\right\}_{i=0}^{d}$ is a standard ordering of the primitive idempotents of A.
(3) $\left\{E_{i}^{*}\right\}_{i=0}^{d}$ is a standard ordering of the primitive idempotents of A^{*}.

Until further notice we fix a TD system Φ as above.

For $0 \leq i \leq d$ let θ_{i} (resp. θ_{i}^{*}) denote the eigenvalue of A (resp. A^{*}) associated with the eigenspace $E_{i} V\left(\right.$ resp. $\left.E_{i}^{*} V\right)$.

For $0 \leq i \leq d$ let θ_{i} (resp. θ_{i}^{*}) denote the eigenvalue of A (resp. A^{*}) associated with the eigenspace $E_{i} V$ (resp. $E_{i}^{*} V$).

We call $\left\{\theta_{i}\right\}_{i=0}^{d}$ (resp. $\left\{\theta_{i}^{*}\right\}_{i=0}^{d}$) the eigenvalue sequence (resp. dual eigenvalue sequence) of Φ.

Theorem (Ito+Tanabe+T, 2001)

The expressions

$$
\frac{\theta_{i-2}-\theta_{i+1}}{\theta_{i-1}-\theta_{i}}, \quad \frac{\theta_{i-2}^{*}-\theta_{i+1}^{*}}{\theta_{i-1}^{*}-\theta_{i}^{*}}
$$

are equal and independent of i for $2 \leq i \leq d-1$.

Let $\beta+1$ denote the common value of the above expressions.

Solving the recurrence

For the above recurrence the "simplest" solution is

$$
\begin{aligned}
& \theta_{i}=d-2 i(0 \leq i \leq d) \\
& \theta_{i}^{*}=d-2 i(0 \leq i \leq d)
\end{aligned}
$$

In this case $\beta=2$.
For this solution our TD system Φ is said to have Krawtchouk type.

Solving the recurrence, cont.

For the above recurrence another solution is

$$
\begin{aligned}
& \theta_{i}=q^{d-2 i} \quad(0 \leq i \leq d) \\
& \theta_{i}^{*}=q^{d-2 i}(0 \leq i \leq d) \\
& q \neq 0, \quad q^{2} \neq 1, \quad q^{2} \neq-1
\end{aligned}
$$

In this case $\beta=q^{2}+q^{-2}$.
For this solution Φ is said to have q-Krawtchouk type.

Solving the recurrence, cont.

For the above recurrence the "most general" solution is

$$
\begin{aligned}
& \theta_{i}=a+b q^{2 i-d}+c q^{d-2 i} \quad(0 \leq i \leq d) \\
& \theta_{i}^{*}=a^{*}+b^{*} q^{2 i-d}+c^{*} q^{d-2 i}(0 \leq i \leq d) \\
& q, a, b, c, a^{*}, b^{*}, c^{*} \in \overline{\mathbb{F}}, \\
& q \neq 0, \quad q^{2} \neq 1, \quad q^{2} \neq-1, \quad b b^{*} c c^{*} \neq 0
\end{aligned}
$$

In this case $\beta=q^{2}+q^{-2}$.
For this solution Φ is said to have q-Racah type.

Some notation

For later use we define some polynomials in an indeterminate λ.
For $0 \leq i \leq d$,

$$
\begin{aligned}
\tau_{i} & =\left(\lambda-\theta_{0}\right)\left(\lambda-\theta_{1}\right) \cdots\left(\lambda-\theta_{i-1}\right), \\
\eta_{i} & =\left(\lambda-\theta_{d}\right)\left(\lambda-\theta_{d-1}\right) \cdots\left(\lambda-\theta_{d-i+1}\right), \\
\tau_{i}^{*} & =\left(\lambda-\theta_{0}^{*}\right)\left(\lambda-\theta_{1}^{*}\right) \cdots\left(\lambda-\theta_{i-1}^{*}\right), \\
\eta_{i}^{*} & =\left(\lambda-\theta_{d}^{*}\right)\left(\lambda-\theta_{d-1}^{*}\right) \cdots\left(\lambda-\theta_{d-i+1}^{*}\right) .
\end{aligned}
$$

Note that each of $\tau_{i}, \eta_{i}, \tau_{i}^{*}, \eta_{i}^{*}$ is monic with degree i.

The shape

It is known that for $0 \leq i \leq d$ the eigenspaces $E_{i} V, E_{i}^{*} V$ have the same dimension; we denote this common dimension by ρ_{i}.

Lemma (Ito+Tanabe+T, 2001)

The sequence $\left\{\rho_{i}\right\}_{i=0}^{d}$ is symmetric and unimodal; that is

$$
\begin{array}{ll}
\rho_{i}=\rho_{d-i} & (0 \leq i \leq d) \\
\rho_{i-1} \leq \rho_{i} & (1 \leq i \leq d / 2)
\end{array}
$$

We call the sequence $\left\{\rho_{i}\right\}_{i=0}^{d}$ the shape of Φ.

A bound on the shape

Theorem (lto+Nomura+T, 2009)

The shape $\left\{\rho_{i}\right\}_{i=0}^{d}$ of Φ satisfies

$$
\rho_{i} \leq \rho_{0}\binom{d}{i} \quad(0 \leq i \leq d)
$$

What are the possible values for ρ_{0} ?

What are the possible values for ρ_{0} ?
The answer depends on the precise nature of the field \mathbb{F}.

What are the possible values for ρ_{0} ?
The answer depends on the precise nature of the field \mathbb{F}.
We will explain this after a few slides.

Some relations

Lemma

Our TD system $\Phi=\left(A ;\left\{E_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ satisfies the following relations:

$$
\begin{gathered}
E_{i} E_{j}=\delta_{i, j} E_{i}, \quad E_{i}^{*} E_{j}^{*}=\delta_{i, j} E_{i}^{*} \quad 0 \leq i, j \leq d, \\
1=\sum_{i=0}^{d} E_{i}, \quad 1=\sum_{i=0}^{d} E_{i}^{*}, \\
A=\sum_{i=0}^{d} \theta_{i} E_{i}, \quad A^{*}=\sum_{i=0}^{d} \theta_{i}^{*} E_{i}^{*}, \\
E_{i}^{*} A^{k} E_{j}^{*}=0 \quad \text { if } k<|i-j| \quad 0 \leq i, j, k \leq d, \\
E_{i} A^{* k} E_{j}=0 \quad \text { if } k<|i-j| \quad 0 \leq i, j, k \leq d .
\end{gathered}
$$

We call these last two equations the triple product relations.

Tatsuro Ito, Kazumasa Nomura, Paul Terwilliger
A classification of sharp tridiagonal pairs

The algebra T

Given the relations on the previous slide, it is natural to consider the algebra generated by $A_{;} A^{*} ;\left\{E_{i}\right\}_{i=0}^{d} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}$.

Given the relations on the previous slide, it is natural to consider the algebra generated by $A_{;} A^{*} ;\left\{E_{i}\right\}_{i=0}^{d} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}$.

We call this algebra T.

Given the relations on the previous slide, it is natural to consider the algebra generated by $A_{;} A^{*} ;\left\{E_{i}\right\}_{i=0}^{d} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}$.

We call this algebra T.
Consider the space $E_{0}^{*} T E_{0}^{*}$.

Given the relations on the previous slide, it is natural to consider the algebra generated by $A_{;} A^{*} ;\left\{E_{i}\right\}_{i=0}^{d} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}$.
We call this algebra T.
Consider the space $E_{0}^{*} T E_{0}^{*}$.
Observe that $E_{0}^{*} T E_{0}^{*}$ is an \mathbb{F}-algebra with multiplicative identity E_{0}^{*}.

Theorem (Ito+Nomura + T, 2007)

(i) The \mathbb{F}-algebra $E_{0}^{*} T E_{0}^{*}$ is commutative and generated by

$$
E_{0}^{*} A^{i} E_{0}^{*} \quad 1 \leq i \leq d
$$

(ii) $E_{0}^{*} T E_{0}^{*}$ has no zero-divisors; in other words it is a field. (iii) Viewing this field as a field extension of \mathbb{F}, the index is ρ_{0}.

The parameter ρ_{0}

Corollary (Ito+Nomura+T, 2007)
 If \mathbb{F} is algebraically closed then $\rho_{0}=1$.

We now consider some more relations in T.

The tridiagonal relations

Theorem (Ito+Tanabe+T, 2001)

For our TD system Φ there exist scalars $\gamma, \gamma^{*}, \varrho, \varrho^{*}$ in \mathbb{F} such that

$$
\begin{gathered}
A^{3} A^{*}-(\beta+1) A^{2} A^{*} A+(\beta+1) A A^{*} A^{2}-A^{*} A^{3} \\
=\gamma\left(A^{2} A^{*}-A^{*} A^{2}\right)+\varrho\left(A A^{*}-A^{*} A\right), \\
A^{* 3} A-(\beta+1) A^{* 2} A A^{*}+(\beta+1) A^{*} A A^{* 2}-A A^{* 3} \\
=\gamma^{*}\left(A^{* 2} A-A A^{* 2}\right)+\varrho^{*}\left(A^{*} A-A A^{*}\right) .
\end{gathered}
$$

The above equations are called the tridiagonal relations.

In the Krawtchouk case the tridiagonal relations become the Dolan-Grady relations

$$
\begin{aligned}
{\left[A,\left[A,\left[A, A^{*}\right]\right]\right] } & =4\left[A, A^{*}\right] \\
{\left[A^{*},\left[A^{*},\left[A^{*}, A\right]\right]\right] } & =4\left[A^{*}, A\right]
\end{aligned}
$$

Here $[r, s]=r s-s r$.

The q-Serre relations

In the q-Krawtchouk case the tridiagonal relations become the cubic q-Serre relations

$$
\begin{gathered}
A^{3} A^{*}-[3]_{q} A^{2} A^{*} A+[3]_{q} A A^{*} A^{2}-A^{*} A^{3}=0 \\
A^{* 3} A-[3]_{q} A^{* 2} A A^{*}+[3]_{q} A^{*} A A^{* 2}-A A^{* 3}=0 \\
{[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}} \quad n=0,1,2, \ldots}
\end{gathered}
$$

At this point it is convenient to make an assumption about our TD system Φ.

At this point it is convenient to make an assumption about our TD system Φ.
Φ is called sharp whenever $\rho_{0}=1$, where $\left\{\rho_{i}\right\}_{i=0}^{d}$ is the shape of Φ.

At this point it is convenient to make an assumption about our TD system Φ.
Φ is called sharp whenever $\rho_{0}=1$, where $\left\{\rho_{i}\right\}_{i=0}^{d}$ is the shape of Ф.

If the ground field \mathbb{F} is algebraically closed then Φ is sharp.

At this point it is convenient to make an assumption about our TD system Φ.
Φ is called sharp whenever $\rho_{0}=1$, where $\left\{\rho_{i}\right\}_{i=0}^{d}$ is the shape of Φ.

If the ground field \mathbb{F} is algebraically closed then Φ is sharp.
Until further notice assume Φ is sharp.

For $0 \leq i \leq d$ define

$$
U_{i}=\left(E_{0}^{*} V+\cdots+E_{i}^{*} V\right) \cap\left(E_{i} V+\cdots+E_{d} V\right)
$$

It is known that

$$
V=U_{0}+U_{1}+\cdots+U_{d} \quad(\text { direct sum })
$$

and for $0 \leq i \leq d$ both

$$
\begin{aligned}
U_{0}+\cdots+U_{i} & =E_{0}^{*} V+\cdots+E_{i}^{*} V \\
U_{i}+\cdots+U_{d} & =E_{i} V+\cdots+E_{d} V
\end{aligned}
$$

We call the sequence $\left\{U_{i}\right\}_{i=0}^{d}$ the split decomposition of V with respect to Φ.

The split decomposition, cont.

Theorem (Ito+Tanabe+T, 2001)

For $0 \leq i \leq d$ both

$$
\begin{aligned}
\left(A-\theta_{i} I\right) U_{i} & \subseteq U_{i+1}, \\
\left(A^{*}-\theta_{i}^{*} I\right) U_{i} & \subseteq U_{i-1},
\end{aligned}
$$

where $U_{-1}=0, U_{d+1}=0$.

Observe that for $0 \leq i \leq d$,

$$
\begin{aligned}
\left(A-\theta_{i-1} I\right) \cdots\left(A-\theta_{1} I\right)\left(A-\theta_{0} I\right) U_{0} & \subseteq U_{i} \\
\left(A^{*}-\theta_{1}^{*} I\right) \cdots\left(A^{*}-\theta_{i-1}^{*} I\right)\left(A^{*}-\theta_{i}^{*} I\right) U_{i} & \subseteq U_{0}
\end{aligned}
$$

Therefore U_{0} is invariant under

$$
\left(A^{*}-\theta_{1}^{*} I\right) \cdots\left(A^{*}-\theta_{i}^{*} I\right)\left(A-\theta_{i-1} I\right) \cdots\left(A-\theta_{0} I\right)
$$

Let ζ_{i} denote the corresponding eigenvalue and note that $\zeta_{0}=1$.
We call the sequence $\left\{\zeta_{i}\right\}_{i=0}^{d}$ the split sequence of Φ.

Characterizing the split sequence

The split sequence $\left\{\zeta_{i}\right\}_{i=0}^{d}$ is characterized as follows.

$$
\begin{aligned}
& \text { Lemma (Nomura }+\mathrm{T}, 2007 \text {) } \\
& \text { For } 0 \leq i \leq d, \\
& \qquad E_{0}^{*} \tau_{i}(A) E_{0}^{*}=\frac{\zeta_{i} E_{0}^{*}}{\left(\theta_{0}^{*}-\theta_{1}^{*}\right)\left(\theta_{0}^{*}-\theta_{2}^{*}\right) \cdots\left(\theta_{0}^{*}-\theta_{i}^{*}\right)}
\end{aligned}
$$

A restriction on the split sequence

The split sequence $\left\{\zeta_{i}\right\}_{i=0}^{d}$ satisfies two inequalities.

Lemma (Ito+Tanabe+T, 2001)

$$
\begin{aligned}
& 0 \neq E_{0}^{*} E_{d} E_{0}^{*}, \\
& 0 \neq E_{0}^{*} E_{0} E_{0}^{*} .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
0 & \neq \zeta_{d} \\
0 & \neq \sum_{i=0}^{d} \eta_{d-i}\left(\theta_{0}\right) \eta_{d-i}^{*}\left(\theta_{0}^{*}\right) \zeta_{i} .
\end{aligned}
$$

The parameter array

Lemma (Ito+ Nomura+T, 2008)
The TD system Φ is determined up to isomorphism by the sequence

$$
\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d} ;\left\{\zeta_{i}\right\}_{i=0}^{d}\right) .
$$

We call this sequence the parameter array of Φ.

Our next goal is to describe the μ-Theorem.

Our next goal is to describe the μ-Theorem.
This has to do with an algebra \mathbb{T}.

Our next goal is to describe the μ-Theorem.
This has to do with an algebra \mathbb{T}.
\mathbb{T} is an abstract version of T defined by generators and relations.

Our next goal is to describe the μ-Theorem.
This has to do with an algebra \mathbb{T}.
\mathbb{T} is an abstract version of T defined by generators and relations.
We will define \mathbb{T} shortly.

Feasible sequences

Definition

Let d denote a nonnegative integer and let $\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d}\right)$ denote a sequence of scalars taken from \mathbb{F}. This sequence is called feasible whenever both
(i) $\theta_{i} \neq \theta_{j}, \theta_{i}^{*} \neq \theta_{j}^{*}$ if $i \neq j(0 \leq i, j \leq d)$;
(ii) the expressions $\frac{\theta_{i-2}-\theta_{i+1}}{\theta_{i-1}-\theta_{i}}, \frac{\theta_{i-2}^{*}-\theta_{i+1}^{*}}{\theta_{i-1}^{*}-\theta_{i}^{*}}$ are equal and independent of i for $2 \leq i \leq d-1$.

The algebra \mathbb{T}

Definition

Fix a feasible sequence $p=\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d}\right)$. Let $\mathbb{T}=\mathbb{T}(p, \mathbb{F})$ denote the \mathbb{F}-algebra defined by generators $a,\left\{e_{i}\right\}_{i=0}^{d}, a^{*},\left\{e_{i}^{*}\right\}_{i=0}^{d}$ and relations

$$
\begin{gathered}
e_{i} e_{j}=\delta_{i, j} e_{i}, \quad e_{i}^{*} e_{j}^{*}=\delta_{i, j} e_{i}^{*} \quad 0 \leq i, j \leq d \\
1=\sum_{i=0}^{d} e_{i}, \quad 1=\sum_{i=0}^{d} e_{i}^{*} \\
a=\sum_{i=0}^{d} \theta_{i} e_{i}, \quad a^{*}=\sum_{i=0}^{d} \theta_{i}^{*} e_{i}^{*} \\
e_{i}^{*} a^{k} e_{j}^{*}=0 \quad \text { if } k<|i-j| \quad 0 \leq i, j, k \leq d \\
e_{i} a^{* k} e_{j}=0 \quad \text { if } k<|i-j| \quad 0 \leq i, j, k \leq d
\end{gathered}
$$

Over the next few slides, we explain how TD systems are related to finite-dimensional irreducible \mathbb{T}-modules.

From TD systems to \mathbb{T}-modules

Lemma

Let $\left(A ;\left\{E_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ denote a $T D$ system on V with eigenvalue sequence $\left\{\theta_{i}\right\}_{i=0}^{d}$ and dual eigenvalue sequence $\left\{\theta_{i}^{*}\right\}_{i=0}^{d}$. Let $\mathbb{T}=\mathbb{T}(p, \mathbb{F})$ where $p=\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d}\right)$. Then there exists a unique \mathbb{T}-module structure on V such that $a, e_{i}, a^{*}, e_{i}^{*}$ acts as A, E_{i}, A^{*}, E_{i}^{*} respectively. This \mathbb{T}-module is irreducible.

From \mathbb{T}-modules to TD systems

Lemma

Fix a feasible sequence $p=\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d}\right)$ and write $\mathbb{T}=\mathbb{T}(p, \mathbb{F})$. Let V denote a finite-dimensional irreducible \mathbb{T}-module.
(i) There exist nonnegative integers r, δ

$$
\begin{aligned}
& (r+\delta \leq d) \text { such that for } 0 \leq i \leq d \\
& \qquad e_{i}^{*} V \neq 0 \text { if and only if } r \leq i \leq r+\delta .
\end{aligned}
$$

(ii) There exist nonnegative integers t, δ^{*} $\left(t+\delta^{*} \leq d\right)$ such that for $0 \leq i \leq d$, $e_{i} V \neq 0 \quad$ if and only if $\quad t \leq i \leq t+\delta^{*}$.
(iii) $\delta=\delta^{*}$.
(iv) The sequence $\left(a ;\left\{e_{i}\right\}_{i=t}^{t+\delta} ; a^{*} ;\left\{e_{i}^{*}\right\}_{i=r}^{r+\delta}\right)$ acts on V as a $T D$ system of diameter δ.

Fix a feasible sequence $p=\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d}\right)$ and consider the \mathbb{F}-algebra $\mathbb{T}=\mathbb{T}(p, \mathbb{F})$.

Fix a feasible sequence $p=\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d}\right)$ and consider the \mathbb{F}-algebra $\mathbb{T}=\mathbb{T}(p, \mathbb{F})$.

As we did with T we consider the space $e_{0}^{*} \mathbb{T} e_{0}^{*}$.

Fix a feasible sequence $p=\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d}\right)$ and consider the \mathbb{F}-algebra $\mathbb{T}=\mathbb{T}(p, \mathbb{F})$.

As we did with T we consider the space $e_{0}^{*} \mathbb{T} e_{0}^{*}$.
Observe that $e_{0}^{*} \mathbb{T} e_{0}^{*}$ is an \mathbb{F}-algebra with multiplicative identity e_{0}^{*}.

Notation

Let $\left\{\lambda_{i}\right\}_{i=1}^{d}$ denote mutually commuting indeterminates.
Let $\mathbb{F}\left[\lambda_{1}, \ldots, \lambda_{d}\right]$ denote the \mathbb{F}-algebra consisting of the polynomials in $\left\{\lambda_{i}\right\}_{i=1}^{d}$ that have all coefficients in \mathbb{F}.

Theorem (Ito+Nomura+T, 2009)

There exists an \mathbb{F}-algebra isomorphism

$$
\mathbb{F}\left[\lambda_{1}, \ldots, \lambda_{d}\right] \rightarrow e_{0}^{*} \mathbb{T} e_{0}^{*}
$$

that sends

$$
\lambda_{i} \mapsto e_{0}^{*} a^{i} e_{0}^{*}
$$

for $1 \leq i \leq d$.

The μ-Theorem: proof summary

Proof summary: We first verify the result assuming p has q-Racah type. To do this we make use of the quantum affine algebra $U_{q}\left(\hat{\mathfrak{s}}_{2}\right)$. We identify two elements in $U_{q}\left(\hat{\mathfrak{s}}_{2}\right)$ that satisfy the tridiagonal relations. We let these elements act on $U_{q}\left(\hat{\mathfrak{s}}_{2}\right)$-modules of the form $W_{1} \otimes W_{2} \otimes \cdots \otimes W_{d}$ where each W_{i} is an evaluation module of dimension 2. Each of these actions gives a TD system of q-Racah type which in turn yields a \mathbb{T}-module. The resulting supply of \mathbb{T}-modules is sufficiently rich to contradict the existence of an algebraic relation among $\left\{e_{0}^{*} a^{i} e_{0}^{*}\right\}_{i=1}^{d}$.
We then remove the assumption that p has q-Racah type. In this step the main ingredient is to show that for any polynomial h over \mathbb{F} in $2 d+2$ variables, if $h(p)=0$ under the assumption that p is q-Racah, then $h(p)=0$ without the assumption.

A classification of sharp tridiagonal systems

Theorem (Ito+Nomura + T, 2009)

Let $\quad\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d} ;\left\{\zeta_{i}\right\}_{i=0}^{d}\right)$ (1) denote a sequence of scalars in \mathbb{F}. Then there exists a sharp TD system Φ over \mathbb{F} with parameter array (1) if and only if:
(i) $\theta_{i} \neq \theta_{j}, \theta_{i}^{*} \neq \theta_{j}^{*}$ if $i \neq j(0 \leq i, j \leq d)$;
(ii) the expressions $\frac{\theta_{i-2}-\theta_{i+1}}{\theta_{i-1}-\theta_{i}}, \frac{\theta_{i-2}^{*}-\theta_{i+1}^{*}}{\theta_{i-1}^{*}-\theta_{i}^{*}}$ are equal and independent of i for $2 \leq i \leq d-1$;
(iii) $\zeta_{0}=1, \zeta_{d} \neq 0$, and

$$
0 \neq \sum_{i=0}^{d} \eta_{d-i}\left(\theta_{0}\right) \eta_{d-i}^{*}\left(\theta_{0}^{*}\right) \zeta_{i}
$$

Suppose (i)-(iii) hold. Then Φ is unique up to isomorphism of TD systems.

The classification: proof summary

Proof ("only if"): By our previous remarks.
Proof ("if"): Consider the algebra $\mathbb{T}=\mathbb{T}(p, \mathbb{F})$ where
$p=\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d}\right)$.
By the μ-Theorem $e_{0}^{*} \mathbb{T} e_{0}^{*}$ is a polynomial algebra.
Therefore $e_{0}^{*} \mathbb{T} e_{0}^{*}$ has a 1-dimensional module on which

$$
e_{0}^{*} \tau_{i}(a) e_{0}^{*}=\frac{\zeta_{i} e_{0}^{*}}{\left(\theta_{0}^{*}-\theta_{1}^{*}\right)\left(\theta_{0}^{*}-\theta_{2}^{*}\right) \cdots\left(\theta_{0}^{*}-\theta_{i}^{*}\right)}
$$

for $1 \leq i \leq d$.
The above 1-dimensional $e_{0}^{*} \mathbb{T} e_{0}^{*}$-module induces a \mathbb{T}-module V which turns out to be finite-dimensional; by construction $e_{0}^{*} V$ has dimension 1.

One checks that the \mathbb{T}-module V has a unique maximal proper submodule M.

Consider the irreducible \mathbb{T}-module V / M.
By the inequalities in (iii),

$$
e_{0}^{*} e_{d} e_{0}^{*} \neq 0, \quad e_{0}^{*} e_{0} e_{0}^{*} \neq 0
$$

on V / M.
Therefore each of e_{0}, e_{d} is nonzero on V / M.
Now the \mathbb{T}-generators $\left(a ;\left\{e_{i}\right\}_{i=0}^{d} ; a^{*} ;\left\{e_{i}^{*}\right\}_{i=0}^{d}\right)$ act on V / M as a sharp TD system of diameter d.

One checks that this TD system has the desired parameter array $\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d} ;\left\{\zeta_{i}\right\}_{i=0}^{d}\right)$.

Summary

We defined a TD system and discussed its eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

We defined a TD system and discussed its eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

We defined an algebra \mathbb{T} by generators and relations, and proved the μ-Theorem about its structure.

We defined a TD system and discussed its eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.
We defined an algebra \mathbb{T} by generators and relations, and proved the μ-Theorem about its structure.

We used the μ-Theorem to classify the sharp TD systems up to isomorphism.

We defined a TD system and discussed its eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

We defined an algebra \mathbb{T} by generators and relations, and proved the μ-Theorem about its structure.

We used the μ-Theorem to classify the sharp TD systems up to isomorphism.

Thank you for your attention!

THE END

