Wilson's Graph Operations on Wada Dessins

Cristina Sarti

University of Frankfurt

August 6, 2010

C.Sarti (University of Frankfurt)

Wilson Operations on Wada Dessins

August 6, 2010 1 / 20

3

-

Dessins d'enfants

Dessins d'enfants (=children drawings) are hypermaps on Riemann surfaces.

Hypermaps \longrightarrow bipartite graphs drawn without crossings on a surface.

We say that a dessin on a surface X has signature < p, q, r >, if

- p := lcm of all valencies of the white vertices,
- q := lcm of all valencies of the black vertices,
- 2r := lcm of all valencies of the faces.

Dessin is uniform = all white vertices have the same valency p, all black vertices have the same valency q, all faces have the same valency 2r.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Finite Projective Spaces

$$\mathbb{P}^{m}(\mathbb{F}_{n}) = (\mathbb{F}_{n}^{m+1} \setminus \{0\}) / \mathbb{F}_{n}^{*}, \quad n = p^{e}, \quad p \text{ prime },$$
$$\cong \mathbb{F}_{n^{m+1}}^{*} / \mathbb{F}_{n}^{*}.$$

$$\ell = \frac{n^{m+1}-1}{n-1}, \qquad q = \frac{n^m-1}{n-1}$$

Each element of $\mathbb{F}_{n^{m+1}}^*/\mathbb{F}_n^*$ can be written as a power g^i of a generating element < g >.

Notation:

$$g^b \leftrightarrow P_b$$
 (points) $g^w \leftrightarrow h_w$ (hyperplanes).

 \implies we may number the points and the hyperplanes using integers $1, \ldots, \ell$.

Constructing the Dessins

Incidence pattern of points P_b and hyperplanes h_w using bipartite graphs.

Table: Conventions

point	black vertex •
hyperplane	white vertex \circ
incidence	joining edge —

How do we know which point P_b is incident with which hyperplane h_w and vice versa? \longrightarrow difference sets (Singer 1938).

Definition

A (v, k, λ) -difference set $D = \{d_1, \ldots, d_k\}$ is a collection of k residues modulo v, such that for any residue $\alpha \not\equiv 0 \mod v$ the congruence

 $d_i - d_j \equiv \alpha \mod v$

has exactly λ solution pairs (d_i, d_j) with d_i and d_j in D.

- **1** For projective spaces: $v = \ell$, k = q.
- $P_b \text{ and } h_w \text{ are incident} \Leftrightarrow b w \equiv d_i \mod \ell.$
- **③** Any pair of points occur in λ different hyperplanes.

イロト 不得下 イヨト イヨト 二日

Local Incidence Pattern

C.Sarti (University of Frankfurt)

► < ∃ ►</p>

3

Wada Dessins

Construction of a uniform $\langle q, q, \ell \rangle$ -Wada dessin (Streit - Wolfart 2001) if the Wada condition is satisfied, i.e. if

$$(d_i-d_{i+1},\ell)=1 \; orall i \in \mathbb{Z}/q\mathbb{Z}$$
 .

Wada property: each vertex of each color lies on the boundary of each cell. \rightarrow Wada dessins are always uniform!

一日、

Example: $\mathbb{P}^2(\mathbb{F}_2)$ (Fano Plane)

Embedding of the bipartite graph in a Riemann surface (Klein's quartic in this case) \implies Wada dessin with signature < 3, 3, 7 >.

C.Sarti (University of Frankfurt)

Automorphism Groups

Under special conditions the full automorphism group (orientation-preserving) of $\langle q, q, \ell \rangle$ -Wada dessins is the semidirect product $\Phi_f \ltimes \Sigma_\ell$ acting fixed point free on the edges.

Recall: $\mathbb{P}^m(\mathbb{F}_n) \cong \mathbb{F}^*_{n^{m+1}}/\mathbb{F}^*_n$, $n = p^e$, i.e.

$$g^b \leftrightarrow P_b, \quad g^w \leftrightarrow h_w \;,$$

< g > := generating element of $\mathbb{F}^*_{n^{m+1}}/\mathbb{F}^*_n$.

1. Action of a Singer group $\Sigma_{\ell} \cong \mathbb{F}_{n^{m+1}}^* / \mathbb{F}_n^*$ (cyclic, of order ℓ):

$$\begin{aligned} \sigma^i: \quad P_b \longmapsto P_{b+i} \;, \quad \sigma^i \in \Sigma_\ell \\ h_w \longmapsto h_{w+i} \;. \end{aligned}$$

On the Wada dessins the Singer automorphism acts permuting transitively the edges of type $\bullet - \circ$ and of type $\circ - \bullet$ on the cell boundaries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

2. Action of the group $\Phi_f \cong Gal(\mathbb{F}_{n^{m+1}}/\mathbb{F}_p)$, $f = e \cdot (m+1)$ generated by the Frobenius automorphism φ :

$$\begin{array}{rcl} \varphi^k : & P_b \longmapsto P_{b \cdot p^k} \ , & \varphi^k \in \Phi_f \\ & & h_w \longmapsto h_{w \cdot p^k} \ . \end{array}$$

The Frobenius automorphism acts by rotating the cells of the Wada dessins around the fixed vertices. The action on the cells is fixed point free.

BUT the Frobenius automorphism is <u>not</u> always an automorphism of Wada dessins \longrightarrow Frobenius Compatibility is needed!

$$D_f = \{ \frac{d_1}{d_1}, \cdots, d_k, p \frac{d_1}{d_1}, \cdots, p \frac{d_k}{d_k}, \cdots, p^{(f-1)} \frac{d_1}{d_1}, \cdots, p^{(f-1)} \frac{d_k}{d_k} \},$$
$$\frac{q}{f} = k.$$

< 回 ト < 三 ト < 三 ト

Frobenius Compatibility

3. 3

A 🕨 🗸

Example: $\mathbb{P}^2(\mathbb{F}_5)$

$$\begin{split} \mathbb{P}^2(\mathbb{F}_5) \ , \quad D_3 &= \{1, 11, 5, 24, 25, 27\} \mod 31 \ , \\ \Sigma_{31} \ , \quad \Phi_3 &\cong \textit{Gal}(\mathbb{F}_{5^3}/\mathbb{F}_5) \ , \quad \Phi_3 \ltimes \Sigma_{31} \ . \end{split}$$

3

(人間) トイヨト イヨト

Wilson Operations H_k

3

イロト イポト イヨト イヨト

Wilson Operations and 'Mock' Wilson Operations

Under the action of a Wilson operator H_k on the underlying graph \mathcal{G} of a map we obtain a new embedding of the graph on a Riemann surface. The cell valency may change.

The vertex valency is preserved (gcd(p, k) = 1, p vertex valency).

 \rightarrow 'mock' Wilson operators $H_{k,k}$ on $\langle q, q, \ell \rangle$ -Wada dessins:

 $H_{k,k} \longleftrightarrow$ action of H_k on the edges incident with the white and with the black vertices.

The integer k is **not prime** to the vertex valency.

'Mock' Wilson Operations on Wada Dessins

We consider $\langle q, q, \ell \rangle$ -Wada dessins \mathcal{D} with automorphism group:

 $\Phi_f \ltimes \Sigma_\ell$,

 $\Phi_f \cong Gal(\mathbb{F}_{n^{m+1}}/\mathbb{F}_p), n = p^e, \Sigma_\ell$ the Singer group. Underlying difference set:

$$D_{f} = \{ d_{1}, \cdots, d_{k}, pd_{1}, \cdots, pd_{k}, \cdots, p^{(f-1)}d_{1}, \cdots, p^{(f-1)}d_{k} \},$$
$$\frac{q}{f} = k. \quad (\text{Frobenius Compatibility})$$

 \rightarrow 'mock' Wilson operators $H_{k,k}$ on them, with $k := \frac{q}{f}$. 'New' set:

$$H_k D_f = \{d_1, pd_1, \ldots, p^{(f-1)}d_1\}.$$

(4回) (三) (三) (三) (0) (0)

Local Incidence Pattern

3

過 ト イヨト イヨト

Main Results

The resulting dessins are $\langle f, f, \ell \rangle$ -Wada dessins $H_{k,k}\mathcal{D}$ if the Wada property

$$((p^{j}d_{1}-p^{j+1}d_{1}),\ell)=1$$

is preserved.

1. The groups Σ_{ℓ} and Φ_f are still groups of automorphisms. The group Σ_{ℓ} acts permuting transitively the edges of type $\bullet - \circ$ and of type $\circ - \bullet$ on the cell boundaries.

The group Φ_f acts rotating the cells around the fixed vertices, **BUT** now its action is not only free, it is also transitive.

 \longrightarrow Consequence: the new dessins $H_{k,k}\mathcal{D}$ are regular with automorphism group $\Phi_f \ltimes \Sigma_{\ell}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- **2.** X := surface of the embedding of the starting $\langle q, q, \ell \rangle$ -Wada dessin \mathcal{D} .
- Y := surface of the embedding of the new $< f, f, \ell >$ -Wada dessins $H_{k,k}\mathcal{D}$.

Due to group theoretical and function theoretical reasons we may prove that a ramified covering of Y by X exists. The covering is of degree k. Ramifications points are the black and the white vertices of $H_{k,k}\mathcal{D}$. The covering is unramified over the cell mid points.

くほと くほと くほと

Example: $\mathbb{P}^2(\mathbb{F}_5)$

$$\begin{split} \mathbb{P}^2(\mathbb{F}_5) \;, \qquad p=5 \;, \quad k=2 \;, \quad \Phi_3 \;, \quad \Sigma_{31}. \\ D_3 &= \{1,11,5,24,25,27\} \mod 31 \;, \\ H_2 D_3 &= \{1,5,25\} \mod 31 \;. \end{split}$$

э.

3

- 4 同 6 4 日 6 4 日 6