Wilson's Graph Operations on Wada Dessins

Cristina Sarti
University of Frankfurt

August 6, 2010

Dessins d'enfants

Dessins d'enfants (=children drawings) are hypermaps on Riemann surfaces.

Hypermaps \longrightarrow bipartite graphs drawn without crossings on a surface.
We say that a dessin on a surface X has signature $\langle p, q, r\rangle$, if
$p:=\mathrm{lcm}$ of all valencies of the white vertices, $q:=\mathrm{lcm}$ of all valencies of the black vertices, $2 r:=\mathrm{lcm}$ of all valencies of the faces.

Dessin is uniform $=$ all white vertices have the same valency p, all black vertices have the same valency q, all faces have the same valency $2 r$.

Finite Projective Spaces

$$
\begin{aligned}
& \mathbb{P}^{m}\left(\mathbb{F}_{n}\right)=\left(\mathbb{F}_{n}^{m+1} \backslash\{0\}\right) / \mathbb{F}_{n}^{*}, \quad n=p^{e}, \quad p \text { prime }, \\
& \cong \quad \mathbb{F}_{n^{m+1}}^{*} / \mathbb{F}_{n}^{*} \\
& \ell=\frac{n^{m+1}-1}{n-1}, \quad q=\frac{n^{m}-1}{n-1} .
\end{aligned}
$$

Each element of $\mathbb{F}_{n^{m+1}}^{*} / \mathbb{F}_{n}^{*}$ can be written as a power g^{i} of a generating element $\langle g\rangle$.

Notation:

$$
g^{b} \leftrightarrow P_{b} \text { (points) } \quad g^{w} \leftrightarrow h_{w} \text { (hyperplanes) . }
$$

\Longrightarrow we may number the points and the hyperplanes using integers $1, \ldots, \ell$.

Constructing the Dessins

Incidence pattern of points P_{b} and hyperplanes h_{w} using bipartite graphs.
Table: Conventions

point	black vertex •
hyperplane	white vertex \circ
incidence	joining edge -

How do we know which point P_{b} is incident with which hyperplane h_{w} and vice versa? \longrightarrow difference sets (Singer 1938).

Definition

A (v, k, λ)-difference set $D=\left\{d_{1}, \ldots, d_{k}\right\}$ is a collection of k residues modulo v, such that for any residue $\alpha \not \equiv 0 \bmod v$ the congruence

$$
d_{i}-d_{j} \equiv \alpha \bmod v
$$

has exactly λ solution pairs $\left(d_{i}, d_{j}\right)$ with d_{i} and d_{j} in D.
(1) For projective spaces: $v=\ell, k=q$.
(2) P_{b} and h_{w} are incident $\Leftrightarrow b-w \equiv d_{i} \bmod \ell$.
(3) Any pair of points occur in λ different hyperplanes.

Local Incidence Pattern

Incidence relation: $b-w \equiv d_{i} \bmod \ell$.

Wada Dessins

Construction of a uniform $<q, q, \ell>-$ Wada dessin (Streit - Wolfart 2001) if the Wada condition is satisfied, i.e. if

$$
\left(d_{i}-d_{i+1}, \ell\right)=1 \forall i \in \mathbb{Z} / q \mathbb{Z}
$$

Wada property: each vertex of each color lies on the boundary of each cell.
\longrightarrow Wada dessins are always uniform!

Example: $\mathbb{P}^{2}\left(\mathbb{F}_{2}\right)$ (Fano Plane)

Embedding of the bipartite graph in a Riemann surface (Klein's quartic in this case) \Longrightarrow Wada dessin with signature $<3,3,7>$.

Automorphism Groups

Under special conditions the full automorphism group (orientation-preserving) of $<q, q, \ell>$-Wada dessins is the semidirect product $\Phi_{f} \ltimes \Sigma_{\ell}$ acting fixed point free on the edges.

Recall: $\mathbb{P}^{m}\left(\mathbb{F}_{n}\right) \cong \mathbb{F}_{n^{m+1}}^{*} / \mathbb{F}_{n}^{*}, n=p^{e}$, i.e.

$$
g^{b} \leftrightarrow P_{b}, \quad g^{w} \leftrightarrow h_{w},
$$

$<g>:=$ generating element of $\mathbb{F}_{n^{m+1}}^{*} / \mathbb{F}_{n}^{*}$.

1. Action of a Singer group $\Sigma_{\ell} \cong \mathbb{F}_{n^{m+1}}^{*} / \mathbb{F}_{n}^{*}($ cyclic, of order $\ell)$:

$$
\begin{aligned}
\sigma^{i}: & P_{b} \longmapsto P_{b+i}, \quad \sigma^{i} \in \Sigma_{\ell} \\
& h_{w} \longmapsto h_{w+i} .
\end{aligned}
$$

On the Wada dessins the Singer automorphism acts permuting transitively the edges of type $\bullet-$ and of type $\circ-\bullet$ on the cell boundaries.
2. Action of the group $\Phi_{f} \cong G a l\left(\mathbb{F}_{n^{m+1}} / \mathbb{F}_{p}\right), f=e \cdot(m+1)$ generated by the Frobenius automorphism φ :

$$
\begin{aligned}
\varphi^{k}: & P_{b} \longmapsto P_{b \cdot p^{k}}, \quad \varphi^{k} \in \Phi_{f} \\
& h_{w} \longmapsto h_{w \cdot p^{k}} .
\end{aligned}
$$

The Frobenius automorphism acts by rotating the cells of the Wada dessins around the fixed vertices. The action on the cells is fixed point free.

BUT the Frobenius automorphism is not always an automorphism of Wada dessins \longrightarrow Frobenius Compatibility is needed!

$$
\begin{aligned}
D_{f}= & \left\{d_{1}, \cdots, d_{k}, p d_{1}, \cdots, p d_{k}, \cdots \cdots, p^{(f-1)} d_{1}, \cdots, p^{(f-1)} d_{k}\right\}, \\
& \frac{q}{f}=k
\end{aligned}
$$

Frobenius Compatibility

Example: $\mathbb{P}^{2}\left(\mathbb{F}_{5}\right)$

$$
\begin{aligned}
& \mathbb{P}^{2}\left(\mathbb{F}_{5}\right), \quad D_{3}=\{1,11,5,24,25,27\} \bmod 31 \\
& \Sigma_{31}, \quad \Phi_{3} \cong \operatorname{Gal}\left(\mathbb{F}_{5^{3}} / \mathbb{F}_{5}\right), \quad \Phi_{3} \ltimes \Sigma_{31}
\end{aligned}
$$

D <6,6,31>

$$
\begin{aligned}
& \mathrm{q}=6 \\
& \ell=31 \\
& \mathrm{p}=5 \\
& \\
& \omega=2 \pi / 3 \\
& \varphi^{-1} \sigma \varphi=\sigma^{-5} \\
& \varphi \in \Phi_{3} \\
& \sigma \in \Sigma_{31}
\end{aligned}
$$

Wilson Operations H_{k}

Wilson Operations and 'Mock' Wilson Operations

Under the action of a Wilson operator H_{k} on the underlying graph \mathcal{G} of a map we obtain a new embedding of the graph on a Riemann surface. The cell valency may change.
The vertex valency is preserved $(\operatorname{gcd}(p, k)=1, p$ vertex valency $)$.
\longrightarrow 'mock' Wilson operators $H_{k, k}$ on $<q, q, \ell>$-Wada dessins:
$H_{k, k} \longleftrightarrow$ action of H_{k} on the edges incident with the white and with the black vertices.

The integer k is not prime to the vertex valency.

'Mock' Wilson Operations on Wada Dessins

We consider $<q, q, \ell>$-Wada dessins \mathcal{D} with automorphism group:

$$
\Phi_{f} \ltimes \Sigma_{\ell},
$$

$\Phi_{f} \cong \operatorname{Gal}\left(\mathbb{F}_{n^{m+1}} / \mathbb{F}_{p}\right), n=p^{e}, \Sigma_{\ell}$ the Singer group.
Underlying difference set:

$$
\begin{aligned}
D_{f}= & \left\{d_{1}, \cdots, d_{k}, p d_{1}, \cdots, p d_{k}, \cdots \cdots, p^{(f-1)} d_{1}, \cdots, p^{(f-1)} d_{k}\right\}, \\
& \frac{q}{f}=k . \quad \text { (Frobenius Compatibility) }
\end{aligned}
$$

\longrightarrow 'mock' Wilson operators $H_{k, k}$ on them, with $k:=\frac{q}{f}$.
'New' set:

$$
H_{k} D_{f}=\left\{d_{1}, p d_{1}, \ldots, p^{(f-1)} d_{1}\right\}
$$

Local Incidence Pattern

Main Results

The resulting dessins are $<f, f, \ell>-$ Wada dessins $H_{k, k} \mathcal{D}$ if the Wada property

$$
\left(\left(p^{j} d_{1}-p^{j+1} d_{1}\right), \ell\right)=1
$$

is preserved.

1. The groups Σ_{ℓ} and Φ_{f} are still groups of automorphisms.

The group Σ_{ℓ} acts permuting transitively the edges of type $\bullet-$ and of type o— on the cell boundaries.
The group Φ_{f} acts rotating the cells around the fixed vertices, BUT now its action is not only free, it is also transitive.
\longrightarrow Consequence: the new dessins $H_{k, k} \mathcal{D}$ are regular with automorphism group $\Phi_{f} \ltimes \Sigma_{\ell}$.
2. $X:=$ surface of the embedding of the starting $\langle q, q, \ell\rangle$-Wada dessin \mathcal{D}.
$Y:=$ surface of the embedding of the new $<f, f, \ell>$-Wada dessins $H_{k, k} \mathcal{D}$.
Due to group theoretical and function theoretical reasons we may prove that a ramified covering of Y by X exists. The covering is of degree k. Ramifications points are the black and the white vertices of $H_{k, k} \mathcal{D}$. The covering is unramified over the cell mid points.

Example: $\mathbb{P}^{2}\left(\mathbb{F}_{5}\right)$

$$
\begin{aligned}
& \mathbb{P}^{2}\left(\mathbb{F}_{5}\right), \quad p=5, \quad k=2, \quad \Phi_{3}, \quad \Sigma_{31} . \\
& D_{3}=\{1,11,5,24,25,27\} \bmod 31, \\
& H_{2} D_{3}=\{1,5,25\} \bmod 31 .
\end{aligned}
$$

Thank You!

