A-LIKE ELEMENTS FOR A TRIDIAGONAL PAIR

Gabriel Pretel
University of Wisconsin, Madison

Overview

In this talk, we will begin by fixing a tridiagonal pair $\left(A, A^{*}\right)$ on a vector space V, and we will define the notion of an A-like element of $\operatorname{End}(V)$. In order to simplify the situation, we will introduce certain assumptions about the type of the tridiagonal pair $\left(A, A^{*}\right)$.

Overview

In this talk, we will begin by fixing a tridiagonal pair $\left(A, A^{*}\right)$ on a vector space V, and we will define the notion of an A-like element of $\operatorname{End}(V)$. In order to simplify the situation, we will introduce certain assumptions about the type of the tridiagonal pair $\left(A, A^{*}\right)$.
A-like maps form a subspace of $\operatorname{End}(V)$. We will provide a description of this space using certain decompositions of the underlying space V. Part of the task will be to decompose the space of A-like maps into smaller pieces and describe these pieces carefully. In the process we will obtain a basis for the space of A-like maps.

Overview

We will then look at this space from a different point of view, but in order to do so, we will first recall a certain Lie algebra, and we will discuss how some of its representation theory applies to our TD pair $\left(A, A^{*}\right)$.

Overview

We will then look at this space from a different point of view, but in order to do so, we will first recall a certain Lie algebra, and we will discuss how some of its representation theory applies to our TD pair $\left(A, A^{*}\right)$.

Finally, we will consider a special basis for the underlying space V and state some results that relate this basis to the space of A-like maps.

Throughout this talk \mathbb{F} denotes an algebraically closed field with characteristic 0 , and V a nonzero finite-dimensional vector space over \mathbb{F}.

Definition

By a tridiagonal pair on V, we mean an ordered pair $\left(A, A^{*}\right)$, where A and A^{*} are linear transformations on V that satisfy the following four conditions:

Definition

By a tridiagonal pair on V, we mean an ordered pair $\left(A, A^{*}\right)$, where A and A^{*} are linear transformations on V that satisfy the following four conditions:
(i) Each of A, A^{*} is diagonalizable.

Definition

By a tridiagonal pair on V, we mean an ordered pair $\left(A, A^{*}\right)$, where A and A^{*} are linear transformations on V that satisfy the following four conditions:
(i) Each of A, A^{*} is diagonalizable.
(ii) There exists an ordering $V_{0}, V_{1}, \ldots, V_{d}$ of the eigenspaces of A such that $A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1}$ for $0 \leq i \leq d$, where $V_{-1}=0$ and $V_{d+1}=0$.

Definition

By a tridiagonal pair on V, we mean an ordered pair $\left(A, A^{*}\right)$, where A and A^{*} are linear transformations on V that satisfy the following four conditions:
(i) Each of A, A^{*} is diagonalizable.
(ii) There exists an ordering $V_{0}, V_{1}, \ldots, V_{d}$ of the eigenspaces of A such that $A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1}$ for $0 \leq i \leq d$, where $V_{-1}=0$ and $V_{d+1}=0$.
(iii) There exists an ordering $V_{0}^{*}, V_{1}^{*}, \ldots, V_{d}^{*}$ of the eigenspaces of A^{*} such that $A V_{i}^{*} \subseteq V_{i-1}^{*}+V_{i}^{*}+V_{i+1}^{*}$ for $0 \leq i \leq \delta$, where $V_{-1}^{*}=0$ and $V_{\delta+1}^{*}=0$.

Definition

By a tridiagonal pair on V, we mean an ordered pair $\left(A, A^{*}\right)$, where A and A^{*} are linear transformations on V that satisfy the following four conditions:
(i) Each of A, A^{*} is diagonalizable.
(ii) There exists an ordering $V_{0}, V_{1}, \ldots, V_{d}$ of the eigenspaces of A such that $A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1}$ for $0 \leq i \leq d$, where $V_{-1}=0$ and $V_{d+1}=0$.
(iii) There exists an ordering $V_{0}^{*}, V_{1}^{*}, \ldots, V_{d}^{*}$ of the eigenspaces of A^{*} such that $A V_{i}^{*} \subseteq V_{i-1}^{*}+V_{i}^{*}+V_{i+1}^{*}$ for $0 \leq i \leq \delta$, where $V_{-1}^{*}=0$ and $V_{\delta+1}^{*}=0$.
(iv) There does not exist a subspace W of V such that $A W \subseteq W$, $A^{*} W \subseteq W, W \neq 0, W \neq V$.

From now on, we fix a tridiagonal pair $\left(A, A^{*}\right)$.

Some facts and notation:
\boxtimes Refering to the above tridiagonal pair, it turns out that $d=\delta$. We call d the diameter of the tridiagonal pair.

Some facts and notation:
\boxtimes Refering to the above tridiagonal pair, it turns out that $d=\delta$. We call d the diameter of the tridiagonal pair.
\boxtimes We say that an ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A is standard whenever

$$
\begin{aligned}
& A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1} \text { for } 0 \leq i \leq d \\
& \quad\left(\text { where } V_{-1}=0 \text { and } V_{d+1}=0\right)
\end{aligned}
$$

Some facts and notation:
\boxtimes Refering to the above tridiagonal pair, it turns out that $d=\delta$. We call d the diameter of the tridiagonal pair.
\boxtimes We say that an ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A is standard whenever

$$
\begin{aligned}
& A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1} \text { for } 0 \leq i \leq d \\
& \quad\left(\text { where } V_{-1}=0 \text { and } V_{d+1}=0\right)
\end{aligned}
$$

In this case, the ordering $\left\{V_{d-i}\right\}_{i=0}^{d}$ is also standard and no further ordering is standard.

Some facts and notation:
\boxtimes Refering to the above tridiagonal pair, it turns out that $d=\delta$. We call d the diameter of the tridiagonal pair.
\boxtimes We say that an ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A is standard whenever

$$
\begin{aligned}
& A^{*} V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1} \text { for } 0 \leq i \leq d \\
& \quad\left(\text { where } V_{-1}=0 \text { and } V_{d+1}=0\right)
\end{aligned}
$$

In this case, the ordering $\left\{V_{d-i}\right\}_{i=0}^{d}$ is also standard and no further ordering is standard.
\boxtimes This notion of standard orderings applies to A^{*} as well.
\boxtimes Given an eigenspace of a diagonalizable linear transformation, the corresponding primitive idempotent E is the projection onto that eigenspace.
\boxtimes Given an eigenspace of a diagonalizable linear transformation, the corresponding primitive idempotent E is the projection onto that eigenspace.
\boxtimes For $0 \leq i \leq d$, let $\theta_{i}\left(\right.$ resp. $\left.\theta_{i}^{*}\right)$ denote the eigenvalue of A (resp. A^{*}) associated with the eigenspace $E_{i} V\left(\right.$ resp. $\left.E_{i}^{*} V\right)$.
\boxtimes Given an eigenspace of a diagonalizable linear transformation, the corresponding primitive idempotent E is the projection onto that eigenspace.
\boxtimes For $0 \leq i \leq d$, let θ_{i} (resp. θ_{i}^{*}) denote the eigenvalue of A (resp. A^{*}) associated with the eigenspace $E_{i} V\left(\right.$ resp. $E_{i}^{*} V$).
\boxtimes It is known that for $0 \leq i \leq d$ the eigenspaces $E_{i} V, E_{i}^{*} V$ have the same dimension; we denote this common dimension by ρ_{i}.
\boxtimes Given an eigenspace of a diagonalizable linear transformation, the corresponding primitive idempotent E is the projection onto that eigenspace.
\boxtimes For $0 \leq i \leq d$, let θ_{i} (resp. θ_{i}^{*}) denote the eigenvalue of A (resp. A^{*}) associated with the eigenspace $E_{i} V\left(\right.$ resp. $E_{i}^{*} V$).
\boxtimes It is known that for $0 \leq i \leq d$ the eigenspaces $E_{i} V, E_{i}^{*} V$ have the same dimension; we denote this common dimension by ρ_{i}.
$\boxtimes \mathrm{It}$ is also known that the sequence $\left\{\rho_{i}\right\}_{i=0}^{d}$ is symmetric and unimodal; i.e.,

$$
\begin{gathered}
\rho_{i}=\rho_{d-i} \text { for } 0 \leq i \leq d \\
\rho_{i-1} \leq \rho_{i} \text { for } 1 \leq i \leq d / 2
\end{gathered}
$$

\boxtimes Given an eigenspace of a diagonalizable linear transformation, the corresponding primitive idempotent E is the projection onto that eigenspace.
\boxtimes For $0 \leq i \leq d$, let θ_{i} (resp. θ_{i}^{*}) denote the eigenvalue of A (resp. A^{*}) associated with the eigenspace $E_{i} V\left(\right.$ resp. $E_{i}^{*} V$).
$\boxtimes \mathrm{It}$ is known that for $0 \leq i \leq d$ the eigenspaces $E_{i} V, E_{i}^{*} V$ have the same dimension; we denote this common dimension by ρ_{i}.
$\boxtimes \mathrm{It}$ is also known that the sequence $\left\{\rho_{i}\right\}_{i=0}^{d}$ is symmetric and unimodal; i.e.,

$$
\begin{gathered}
\rho_{i}=\rho_{d-i} \text { for } 0 \leq i \leq d \\
\rho_{i-1} \leq \rho_{i} \text { for } 1 \leq i \leq d / 2
\end{gathered}
$$

The sequence $\left(\rho_{0}, \rho_{1}, \ldots, \rho_{d}\right)$ is known as the shape of the tridiagonal pair.

A-LIKE ELEMENTS

Definition
With reference to the above notation, we say that an element X of End (V) is A-like if the following two conditions hold:

A-LIKE ELEMENTS

Definition
With reference to the above notation, we say that an element X of End (V) is A-like if the following two conditions hold:
(i) X commutes with A.

A-LIKE ELEMENTS

Definition

With reference to the above notation, we say that an element X of End (V) is A-like if the following two conditions hold:
(i) X commutes with A.
(ii) $X V_{i}^{*} \subseteq V_{i-1}^{*}+V_{i}^{*}+V_{i+1}^{*}$ for $0 \leq i \leq d$.

A-LIKE ELEMENTS

Definition

The subset of $\operatorname{End}(V)$ consisting of all the A-like elements is a subspace of $\operatorname{End}(V)$, which we denote by L.

A-LIKE ELEMENTS

Definition

The subset of $\operatorname{End}(V)$ consisting of all the A-like elements is a subspace of $\operatorname{End}(V)$, which we denote by L.

We would like to describe L. In order to simplify the situation, we will make some assumptions about our tridiagonal pair $\left(A, A^{*}\right)$.

A-LIKE ELEMENTS for TD pairs of Krawtchouk type with shape $(1,2,1)$

A-LIKE ELEMENTS for TD pairs of Krawtchouk type with shape $(1,2,1)$

Definition

We say that our tridiagonal pair $\left(A, A^{*}\right)$ has Krawtchouk type whenever $\{2 i-d\}_{i=0}^{d}$ is a standard ordering of the eigenvalues of both A and A^{*}.

A-LIKE ELEMENTS for TD pairs of Krawtchouk type with shape $(1,2,1)$

Definition

We say that our tridiagonal pair $\left(A, A^{*}\right)$ has Krawtchouk type whenever $\{2 i-d\}_{i=0}^{d}$ is a standard ordering of the eigenvalues of both A and A^{*}.

From now on, we assume $\left(A, A^{*}\right)$ has Krawtchouk type, with diameter $d=2$, and shape ($1,2,1$).

A-LIKE ELEMENTS for TD pairs of Krawtchouk type with shape $(1,2,1)$

Definition

We say that our tridiagonal pair $\left(A, A^{*}\right)$ has Krawtchouk type whenever $\{2 i-d\}_{i=0}^{d}$ is a standard ordering of the eigenvalues of both A and A^{*}.

From now on, we assume (A, A^{*}) has Krawtchouk type, with diameter $d=2$, and shape $(1,2,1)$.

In some sense, this is the smallest, simplest kind of TD pair that is not a Leonard Pair.

Two Decompositions of $E_{1} V$

Two Decompositions of $E_{1} V$

It follows from work by Melvin Vidar (2008) that the subspace $E_{1} V$ of V decomposes as follows:

$$
E_{1} V=E_{1} E_{0}^{*} V \oplus E_{1} E_{2}^{*} V
$$

Two Decompositions of $E_{1} V$

It follows from work by Melvin Vidar (2008) that the subspace $E_{1} V$ of V decomposes as follows:

$$
E_{1} V=E_{1} E_{0}^{*} V \oplus E_{1} E_{2}^{*} V
$$

One can check that $E_{1} V$ also has the following decomposition:

Two Decompositions of $E_{1} V$

It follows from work by Melvin Vidar (2008) that the subspace $E_{1} V$ of V decomposes as follows:

$$
E_{1} V=E_{1} E_{0}^{*} V \oplus E_{1} E_{2}^{*} V
$$

One can check that $E_{1} V$ also has the following decomposition:

$$
E_{1} V=\left(E_{1} V \cap\left(E_{0}^{*} V+E_{1}^{*} V\right)\right) \oplus\left(E_{1} V \cap\left(E_{1}^{*} V+E_{2}^{*} V\right)\right)
$$

Two Decompositions of V
Thus, the space V has the following two decompositions, each into 1-dimensional subspaces:

$$
\begin{gathered}
V=E_{0} V \oplus E_{1} E_{0}^{*} V \oplus E_{1} E_{2}^{*} V \oplus E_{2} V \\
V=E_{0} V \oplus\left(E_{1} V \cap\left(E_{0}^{*} V+E_{1}^{*} V\right)\right) \oplus\left(E_{1} V \cap\left(E_{1}^{*} V+E_{2}^{*} V\right)\right) \oplus E_{2} V
\end{gathered}
$$

Two Decompositions of V

Thus, the space V has the following two decompositions, each into 1-dimensional subspaces:

$$
\begin{gathered}
V=E_{0} V \oplus E_{1} E_{0}^{*} V \oplus E_{1} E_{2}^{*} V \oplus E_{2} V \\
V=E_{0} V \oplus\left(E_{1} V \cap\left(E_{0}^{*} V+E_{1}^{*} V\right)\right) \oplus\left(E_{1} V \cap\left(E_{1}^{*} V+E_{2}^{*} V\right)\right) \oplus E_{2} V
\end{gathered}
$$

Fact: In 2007, T. Ito and P. Terwilliger showed that there exists a nonzero bilinear form \langle,$\rangle on V$ such that $\langle A u, v\rangle=\langle u, A v\rangle$ and $\left\langle A^{*} u, v\right\rangle=\left\langle u, A^{*} v\right\rangle$ for all u, v in V. This form is unique up to multiplication by a scalar in the field. The form is nondegenerate and symmetric.

Two Decompositions of V

Thus, the space V has the following two decompositions, each into 1-dimensional subspaces:

$$
\begin{gathered}
V=E_{0} V \oplus E_{1} E_{0}^{*} V \oplus E_{1} E_{2}^{*} V \oplus E_{2} V \\
V=E_{0} V \oplus\left(E_{1} V \cap\left(E_{0}^{*} V+E_{1}^{*} V\right)\right) \oplus\left(E_{1} V \cap\left(E_{1}^{*} V+E_{2}^{*} V\right)\right) \oplus E_{2} V
\end{gathered}
$$

Fact: In 2007, T. Ito and P. Terwilliger showed that there exists a nonzero bilinear form \langle,$\rangle on V$ such that $\langle A u, v\rangle=\langle u, A v\rangle$ and $\left\langle A^{*} u, v\right\rangle=\left\langle u, A^{*} v\right\rangle$ for all u, v in V. This form is unique up to multiplication by a scalar in the field. The form is nondegenerate and symmetric.

It is not difficult to check that the above two decompositions of V are dual to one another with respect to this bilinear form.

The subspace L_{0} of L

Definition
We define L_{0} to be the subspace of L containing the A-like elements that vanish on $E_{0} V$ and $E_{2} V$.

The subspace L_{0} of L

Definition
We define L_{0} to be the subspace of L containing the A-like elements that vanish on $E_{0} V$ and $E_{2} V$.
Observe that

$$
L=L_{0} \oplus \operatorname{span}\{I, A\}
$$

The subspace L_{0} of L

Definition

We define L_{0} to be the subspace of L containing the A-like elements that vanish on $E_{0} V$ and $E_{2} V$.
Observe that

$$
L=L_{0} \oplus \operatorname{span}\{I, A\}
$$

We use the above decompositions of V to describe L_{0} more concretely:

A Description of L_{0}

Theorem
For any X in $\operatorname{End}(V), X$ is in L_{0} if and only if the following four conditions hold:

A Description of L_{0}

Theorem
For any X in $\operatorname{End}(V), X$ is in L_{0} if and only if the following four conditions hold:
(i) $X E_{0} V=0$

A Description of L_{0}

Theorem
For any X in $\operatorname{End}(V), X$ is in L_{0} if and only if the following four conditions hold:
(i) $X E_{0} V=0$
(ii) $X E_{2} V=0$

A Description of L_{0}

Theorem
For any X in $\operatorname{End}(V), X$ is in L_{0} if and only if the following four conditions hold:
(i) $X E_{0} V=0$
(ii) $X E_{2} V=0$
(iii) $X E_{1} E_{0}^{*} V \subseteq E_{1} V \cap\left(E_{0}^{*} V+E_{1}^{*} V\right)$

A Description of L_{0}

Theorem
For any X in $\operatorname{End}(V), X$ is in L_{0} if and only if the following four conditions hold:
(i) $X E_{0} V=0$
(ii) $X E_{2} V=0$
(iii) $X E_{1} E_{0}^{*} V \subseteq E_{1} V \cap\left(E_{0}^{*} V+E_{1}^{*} V\right)$
(iv) $X E_{1} E_{2}^{*} V \subseteq E_{1} V \cap\left(E_{1}^{*} V+E_{2}^{*} V\right)$

From the above theorem, we see that L_{0} is a 2-dimensional subspace of $\operatorname{End}(V)$, so L is 4-dimensional.

From the above theorem, we see that L_{0} is a 2-dimensional subspace of $\operatorname{End}(V)$, so L is 4-dimensional.

Up to a scalar multiple, there exist a unique linear map X^{-} satisfying condition 1 below.

Similarly, up to a scalar multiple, there exist a unique linear map X^{+}satisfying condition 2 below.

From the above theorem, we see that L_{0} is a 2-dimensional subspace of $\operatorname{End}(V)$, so L is 4-dimensional.

Up to a scalar multiple, there exist a unique linear map X^{-} satisfying condition 1 below.

Similarly, up to a scalar multiple, there exist a unique linear map X^{+}satisfying condition 2 below.

1. $X^{-} E_{1} E_{0}^{*} V=\left(E_{1} V \cap\left(E_{0}^{*} V+E_{1}^{*} V\right)\right)$ and $X^{-}\left(E_{0} V \oplus E_{1} E_{2}^{*} V \oplus E_{2} V\right)=0$.

From the above theorem, we see that L_{0} is a 2-dimensional subspace of $\operatorname{End}(V)$, so L is 4-dimensional.

Up to a scalar multiple, there exist a unique linear map X^{-} satisfying condition 1 below.

Similarly, up to a scalar multiple, there exist a unique linear map X^{+}satisfying condition 2 below.

$$
\text { 1. } \begin{aligned}
& X^{-} E_{1} E_{0}^{*} V=\left(E_{1} V \cap\left(E_{0}^{*} V+E_{1}^{*} V\right)\right) \text { and } \\
& X^{-}\left(E_{0} V \oplus E_{1} E_{2}^{*} V \oplus E_{2} V\right)=0 . \\
\text { 2. } & X^{+} E_{1} E_{2}^{*} V=\left(E_{1} V \cap\left(E_{1}^{*} V+E_{2}^{*} V\right)\right) \text { and } \\
& X^{+}\left(E_{0} V \oplus E_{1} E_{0}^{*} V \oplus E_{2} V\right)=0 .
\end{aligned}
$$

From the above theorem, we see that L_{0} is a 2-dimensional subspace of $\operatorname{End}(V)$, so L is 4-dimensional.

Up to a scalar multiple, there exist a unique linear map X^{-} satisfying condition 1 below.

Similarly, up to a scalar multiple, there exist a unique linear map X^{+}satisfying condition 2 below.

$$
\text { 1. } \begin{aligned}
& X^{-} E_{1} E_{0}^{*} V=\left(E_{1} V \cap\left(E_{0}^{*} V+E_{1}^{*} V\right)\right) \text { and } \\
& X^{-}\left(E_{0} V \oplus E_{1} E_{2}^{*} V \oplus E_{2} V\right)=0 . \\
\text { 2. } & X^{+} E_{1} E_{2}^{*} V=\left(E_{1} V \cap\left(E_{1}^{*} V+E_{2}^{*} V\right)\right) \text { and } \\
& X^{+}\left(E_{0} V \oplus E_{1} E_{0}^{*} V \oplus E_{2} V\right)=0 .
\end{aligned}
$$

The maps X^{-}and X^{+}span L_{0}.

From the above theorem, we see that L_{0} is a 2-dimensional subspace of $\operatorname{End}(V)$, so L is 4-dimensional.

Up to a scalar multiple, there exist a unique linear map X^{-} satisfying condition 1 below.

Similarly, up to a scalar multiple, there exist a unique linear map X^{+}satisfying condition 2 below.

$$
\text { 1. } \begin{aligned}
& X^{-} E_{1} E_{0}^{*} V=\left(E_{1} V \cap\left(E_{0}^{*} V+E_{1}^{*} V\right)\right) \text { and } \\
& X^{-}\left(E_{0} V \oplus E_{1} E_{2}^{*} V \oplus E_{2} V\right)=0 . \\
\text { 2. } & X^{+} E_{1} E_{2}^{*} V=\left(E_{1} V \cap\left(E_{1}^{*} V+E_{2}^{*} V\right)\right) \text { and } \\
& X^{+}\left(E_{0} V \oplus E_{1} E_{0}^{*} V \oplus E_{2} V\right)=0 .
\end{aligned}
$$

The maps X^{-}and X^{+}span L_{0}.
So $\left\{I, A, X^{-}, X^{+}\right\}$forms a basis for L.

Recall that our bilinear form on V satisfies $\langle A u, v\rangle=\langle u, A v\rangle$ and $\left\langle A^{*} u, v\right\rangle=\left\langle u, A^{*} v\right\rangle$ for all u, v in V.

Recall that our bilinear form on V satisfies $\langle A u, v\rangle=\langle u, A v\rangle$ and $\left\langle A^{*} u, v\right\rangle=\left\langle u, A^{*} v\right\rangle$ for all u, v in V.

Fact: It turns out that for all X in L and for all u, v in V, $\langle X u, v\rangle=\langle u, X v\rangle$.

Let $Z(L)$ denote the set of elements of L that commute with every element of L.

Let $Z(L)$ denote the set of elements of L that commute with every element of L.

It turns out that $Z(L)=\operatorname{span}\{I, A\}$.

Let $Z(L)$ denote the set of elements of L that commute with every element of L.

It turns out that $Z(L)=\operatorname{span}\{I, A\}$.
Therefore

$$
L=L_{0} \oplus Z(L)
$$

We will now look at the space L from a different point of view.

We will now look at the space L from a different point of view.
In order to do this, we first recall a certain Lie algebra over \mathbb{F}, and we discuss how some of the representation theory known about it applies to our TD pair $\left(A, A^{*}\right)$.

The Tetrahedron Algebra (Hartwig and Terwilliger)

Definition

Let \boxtimes denote the Lie algebra over \mathbb{F} that has generators

$$
\left\{x_{i j} \mid i, j \in \mathbb{I}, i \neq j\right\} \quad \mathbb{I}=\{0,1,2,3\}
$$

and the following relations:
(i) For distinct $i, j \in \mathbb{I}$,

$$
x_{i j}+x_{j i}=0
$$

(ii) For mutually distinct $i, j, k \in \mathbb{I}$,

$$
\left[x_{i j}, x_{j k}\right]=2 x_{i j}+2 x_{j k}
$$

(iii) For mutually distinct $i, j, k, \ell \in \mathbb{I}$,

$$
\left[x_{i j},\left[x_{i j},\left[x_{i j}, x_{k l}\right]\right]\right]=4\left[x_{i j}, x_{k l}\right]
$$

The Tetrahedron Algebra and Krawtchouk type TD pairs

The Tetrahedron Algebra and Krawtchouk type TD pairs

Hartwig showed that there is a bijection between the set of isomorphism classes of Krawtchouk type TD pairs and the set of isomorphism classes of finite-dimensional irreducible \boxtimes-modules. The 4-dimensional vector space V we are considering affords an action of \boxtimes, and the actions of A and A^{*} correspond to the actions of x_{12} and x_{03} respectively.

Tensor Products of \boxtimes-Modules

Tensor Products of \boxtimes-Modules

It follows from results by Hartwig that our 4-dimensional space can be realized as a tensor product of two 2-dimensional spaces, each of which is a \boxtimes-module.

Tensor Products of \boxtimes-Modules

It follows from results by Hartwig that our 4-dimensional space can be realized as a tensor product of two 2-dimensional spaces, each of which is a \boxtimes-module.
A acts as x_{12} on each of the 2-dimensional spaces, and it acts on V as $A \otimes I+I \otimes A$.

Tensor Products of \boxtimes-Modules

It follows from results by Hartwig that our 4-dimensional space can be realized as a tensor product of two 2-dimensional spaces, each of which is a \boxtimes-module.
A acts as x_{12} on each of the 2-dimensional spaces, and it acts on V as $A \otimes I+I \otimes A$.

Similarly, A^{*} acts as x_{03} on each of the 2-dimensional spaces, and it acts on V as $A^{*} \otimes I+I \otimes A^{*}$.

We call the above 2-dimensional modules W_{1} and W_{2}.

We call the above 2-dimensional modules W_{1} and W_{2}.
Then there exists a basis B_{1} for W_{1} and a scalar a, with respect to which the actions of A and A^{*} are

$$
A:\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), A^{*}:\left(\begin{array}{cc}
0 & a \\
1 / a & 0
\end{array}\right)
$$

We call the above 2-dimensional modules W_{1} and W_{2}.
Then there exists a basis B_{1} for W_{1} and a scalar a, with respect to which the actions of A and A^{*} are

$$
A:\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), A^{*}:\left(\begin{array}{cc}
0 & a \\
1 / a & 0
\end{array}\right)
$$

and there exists a basis B_{2} for W_{2} and a scalar b, with respect to which the actions of A and A^{*} are

$$
A:\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), A^{*}:\left(\begin{array}{cc}
0 & b \\
1 / b & 0
\end{array}\right)
$$

If we tensor the bases B_{1} and B_{2} together, we can form a basis C for $V=W_{1} \otimes W_{2}$ with respect to which the actions of A and A^{*} are as follows:

$$
A:\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right), A^{*}:\left(\begin{array}{cccc}
0 & a & b & 0 \\
1 / a & 0 & 0 & b \\
1 / b & 0 & 0 & a \\
0 & 1 / b & 1 / a & 0
\end{array}\right)
$$

If we tensor the bases B_{1} and B_{2} together, we can form a basis C for $V=W_{1} \otimes W_{2}$ with respect to which the actions of A and A^{*} are as follows:

$$
A:\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right), A^{*}:\left(\begin{array}{cccc}
0 & a & b & 0 \\
1 / a & 0 & 0 & b \\
1 / b & 0 & 0 & a \\
0 & 1 / b & 1 / a & 0
\end{array}\right)
$$

Theorem
Each vector of the basis C is an eigenvector for the commutator $\left[A, A^{*}\right]=A A^{*}-A^{*} A$.

Other Elements of L

The maps $A \otimes I$ and $I \otimes A$ are elements of L. With respect to the basis C, they are represented by the following matrices

$$
A \otimes I:\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), I \otimes A:\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Other Elements of L

Let the scalars s and c be defined as follows:

$$
s=-\frac{1}{2}\left\{\frac{(a+1)(b+1)}{(a-b)}\right\}^{2}, c=\left(\frac{a b-1}{a-b}\right)^{2}
$$

Other Elements of L

Let the scalars s and c be defined as follows:

$$
s=-\frac{1}{2}\left\{\frac{(a+1)(b+1)}{(a-b)}\right\}^{2}, c=\left(\frac{a b-1}{a-b}\right)^{2}
$$

Let $X_{c}=I+s\left(X^{-}+X^{+}\right)$. Then X_{c} is A-like, and with respect to the basis C, it is represented by the matrix

$$
X_{c}:\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1-c & c & 0 \\
0 & c & 1-c & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Note that the set $\left\{I, A \otimes I, I \otimes A, X_{c}\right\}$ is a linearly independent set of elements of L, so this is a basis for L.

Definition

Let η be the first element of the basis C.

Definition

Let η be the first element of the basis C.
Theorem
For each element v of the basis C, there exists a unique A-like map f such that $f(\eta)=v$.

Definition

Let η be the first element of the basis C.
Theorem
For each element v of the basis C, there exists a unique A-like map f such that $f(\eta)=v$.

Definition

Let φ_{η} be the evaluation map

$$
\varphi_{\eta}: L \rightarrow V \text {, defined by } \varphi_{\eta}: f \mapsto f(\eta)
$$

Definition

Let η be the first element of the basis C.
Theorem
For each element v of the basis C, there exists a unique A-like map f such that $f(\eta)=v$.

Definition

Let φ_{η} be the evaluation map

$$
\varphi_{\eta}: L \rightarrow V \text {, defined by } \varphi_{\eta}: f \mapsto f(\eta)
$$

Corollary

The map $\varphi_{\eta}: L \rightarrow V$ is an isomorphism of vector spaces.

