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Coherent configurations (D. Higman, 1970)

A pair X = (Ω,S) where Ω is a finite set, and S is a partition of
Ω× Ω, is called a coherent configuration if:

1 1Ω = {(α, α) : α ∈ Ω} belongs to the set S∪ of all unions of
the relations from S,

2 S contains s∗ = {(α, β) : (β, α) ∈ s} for all s ∈ S,
3 for all r , s, t ∈ S the intersection number

ct
rs = |{β ∈ Ω : (α, β) ∈ r , (β, γ) ∈ s}|

does not depend on the choice of (α, γ) ∈ t .

The numbers |Ω| and |S| are the degree and rank of X ; when
1Ω ∈ S the coherent configuration X is called homogeneous or
association scheme.
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Schurian coherent configurations

A permutation group G ≤ Sym(Ω) acts naturally on Ω× Ω:

(α, β)g := (αg , βg), α, β ∈ Ω, g ∈ G.

Set X = (Ω,S) where S = Orb(G,Ω× Ω).

Proposition

1 X is a coherent configuration,
2 S∪ is the set of all G-invariant binary relations,
3 X is a scheme iff G is transitive.

We say that X is the coherent configuration of the group G.

Definition

A coherent configuration is called schurian if it the coherent
configuration of some permutation group.
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The schurity problem

Problem: characterize all schurian coherent configurations
belonging to a given a class.

The smallest degree of a non-schurian scheme is 15 (the
Hanaki-Miamoto list), and coherent configuration is ≥ 8
(A.Leman, 1970).

1 a classification of schurian schemes of rank ≤ 3 is a
consequence of the Classification of Finite Simple Groups;

2 the Tits theory on spherical buildings solves the schurity
problem in a class of the Coxeter schemes (Z, 2005);

3 schemes of prime degree p: there exist non-schurian
schemes of rank 3 but any scheme of rank ≥ (4p)4/5 is
schurian (M-P, 2009).
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Quasi-thin schemes (M.Hirasaka 2001)

Let X = (Ω,S) be a scheme.

Then 1Ω ∈ S. Given s ∈ S the
number

ns = c1Ω
ss∗ = |{β ∈ Ω : (α, β) ∈ s}|

is the valency of s.

Definition

The scheme X is thin if S = S1, and quasi-thin if S = S1 ∪ S2
where Si is the set of all s ∈ S with ns = i .

According to the Hanaki-Miamoto list there exist 1, 1 and 26
non-schurian quasi-thin schemes of degrees 16, 28 and 32
respectively.



Quasi-thin schemes (M.Hirasaka 2001)

Let X = (Ω,S) be a scheme. Then 1Ω ∈ S.

Given s ∈ S the
number

ns = c1Ω
ss∗ = |{β ∈ Ω : (α, β) ∈ s}|

is the valency of s.

Definition

The scheme X is thin if S = S1, and quasi-thin if S = S1 ∪ S2
where Si is the set of all s ∈ S with ns = i .

According to the Hanaki-Miamoto list there exist 1, 1 and 26
non-schurian quasi-thin schemes of degrees 16, 28 and 32
respectively.



Quasi-thin schemes (M.Hirasaka 2001)

Let X = (Ω,S) be a scheme. Then 1Ω ∈ S. Given s ∈ S the
number

ns = c1Ω
ss∗ = |{β ∈ Ω : (α, β) ∈ s}|

is the valency of s.

Definition

The scheme X is thin if S = S1, and quasi-thin if S = S1 ∪ S2
where Si is the set of all s ∈ S with ns = i .

According to the Hanaki-Miamoto list there exist 1, 1 and 26
non-schurian quasi-thin schemes of degrees 16, 28 and 32
respectively.



Quasi-thin schemes (M.Hirasaka 2001)

Let X = (Ω,S) be a scheme. Then 1Ω ∈ S. Given s ∈ S the
number

ns = c1Ω
ss∗ = |{β ∈ Ω : (α, β) ∈ s}|

is the valency of s.

Definition

The scheme X is thin if S = S1, and quasi-thin if S = S1 ∪ S2
where Si is the set of all s ∈ S with ns = i .

According to the Hanaki-Miamoto list there exist 1, 1 and 26
non-schurian quasi-thin schemes of degrees 16, 28 and 32
respectively.



Quasi-thin schemes (M.Hirasaka 2001)

Let X = (Ω,S) be a scheme. Then 1Ω ∈ S. Given s ∈ S the
number

ns = c1Ω
ss∗ = |{β ∈ Ω : (α, β) ∈ s}|

is the valency of s.

Definition

The scheme X is thin if S = S1, and quasi-thin if S = S1 ∪ S2
where Si is the set of all s ∈ S with ns = i .

According to the Hanaki-Miamoto list there exist 1, 1 and 26
non-schurian quasi-thin schemes of degrees 16, 28 and 32
respectively.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with

the identity 1Ω,
the s-inverse s∗ and st being the unique r ∈ S1 with cr

st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),
2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,

the s-inverse s∗ and st being the unique r ∈ S1 with cr
st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),
2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,
the s-inverse s∗

and st being the unique r ∈ S1 with cr
st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),
2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,
the s-inverse s∗ and st being the unique r ∈ S1 with cr

st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),
2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,
the s-inverse s∗ and st being the unique r ∈ S1 with cr

st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian

(G = S1),
2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,
the s-inverse s∗ and st being the unique r ∈ S1 with cr

st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),

2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,
the s-inverse s∗ and st being the unique r ∈ S1 with cr

st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),
2 a primitive quasi-thin scheme is schurian

(G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,
the s-inverse s∗ and st being the unique r ∈ S1 with cr

st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),
2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,
the s-inverse s∗ and st being the unique r ∈ S1 with cr

st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),
2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0;

the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,
the s-inverse s∗ and st being the unique r ∈ S1 with cr

st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),
2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s;

the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,
the s-inverse s∗ and st being the unique r ∈ S1 with cr

st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),
2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,
the s-inverse s∗ and st being the unique r ∈ S1 with cr

st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),
2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1,

or S⊥ ⊂ S2.



Partial results. Orthogonals

In any scheme (Ω,S) the set S1 is a group with the identity 1Ω,
the s-inverse s∗ and st being the unique r ∈ S1 with cr

st 6= 0.

Theorem (B.Weisfeiler,1975)

1 a thin scheme is schurian (G = S1),
2 a primitive quasi-thin scheme is schurian (G ∈ {Cp,D2p}).

In a quasi-thin scheme given s ∈ S2 there is a unique s⊥ ∈ S
for which cs⊥

ss∗ 6= 0; the relation s⊥ is the orthogonal of s; the set
of all orthogonals is denoted by S⊥.

Theorem (H-M, 2002 and Z-M, 2008)

A quasi-thin scheme is schurian whenever |S⊥| = 1 and
S⊥ ⊂ S1, or S⊥ ⊂ S2.



Klein configurations

A quasi-thin scheme X = (Ω,S) is called a Klein scheme if the
set {1Ω} ∪ S⊥ is a Klein subgroup of the group S1 (elementary
abelian group of order 4); the number |Ω|/|S1| is the index of X .

Any non-schurian quasi-thin scheme of degree n ∈ {16,28,32}
is a Klein scheme of index 4 (for n = 16,32), or index 7.

Main Theorem

1 any schurian quasi-thin scheme of degree n is a scheme of
a permutation group of order n or 2n;

2 any non-schurian quasi-thin scheme is a Klein scheme of
index 4 or 7;

3 given i ∈ {4,7} there exist infinitely many non-schurian
Klein schemes of index i .
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Corollaries

A scheme is commutative if ct
rs = ct

sr ; commutative thin
schemes are in 1− 1-correspondence with finite abelian
groups.

Corollary

Any commutative quasi-thin scheme is schurian.

The proof of the Main Theorem is based on the technique
developed in [M-P, 2009] to apply to the schurity problem for
pseudocyclic schemes. As a byproduct of the proof one can get
the following result.

Theorem

Any non-Kleinian quasi-thin scheme is uniquely determined by
its array of intersection numbers.
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