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families of graphs. In particular, the following is a
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Classification
Theorem 1.Let Γ be a connected vertex-quasiprimitive edge-transitive metacirculants

onV . Then one of the following holds:

(a) Γ = Kn, Kn × Kn, orKn�Kn.

(b) Γ = line(Kp) and the complement.

(c) Γ = Cay(T, S), whereT = PSL(2, p) andS = {gT , (g−1)T } with g ∈ T , and

G is of diagonal type.

(d) G = PSL(2, p), andΓ is described in Lemma 7-9.

(e) Four exceptional small groups:

G = PΓL(2, 16), andGv = A5.Z4, andΓ is arc-transitive and of valency

12, 15, or 40.

G = PΓL(3, 4), Gv = AΓL(1, 24), |V | = 126, andΓ is homomorphic to

K21.

G = PSL(5, 2), andΓ is the Grassmann graphG2(5, 2) or its complement.

G = PSU(4, 2) orPSU(4, 2).2, andΓ is the Schläfli graph or its

complement.

(f) Γ = Cay(Zd
p, S) is a normal Cayley graph, wherepd = p, p2, 34, 24, 26 or 28.
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Observations

• Observation 1. Each edge-transitive metacirculant is a
multi-cover of a vertex-quasiprimitive or a vertex
biquasiprimitive edge-transitive metacirculant (basic
graph).
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Observations

• Observation 1. Each edge-transitive metacirculant is a
multi-cover of a vertex-quasiprimitive or a vertex
biquasiprimitive edge-transitive metacirculant (basic
graph).

• Observation 2. Each basic edge-transitive metacirculant is a
generalized orbital graph of a quasiprimitive or a
biquasiprimitive permutation group containing a metacyclic
transitive subgroup.

• ThusProblem A(characterizes edge-transitive

metacirculants) is tightly related with following Problem.

Problem B. (Open problem of Wielandt 1949)
Classifying quasiprimitive permutation groups containing a
transitive metacyclic subgroup.
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Research strategy

• Step 1. Classifying quasiprimitive permutation groups
containing a transitive metacyclic subgroup.
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Research strategy

• Step 1. Classifying quasiprimitive permutation groups
containing a transitive metacyclic subgroup.

• Step 2. Classifying generalized orbital graphs of groups
appeared in above step 1.
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Solution of Wielandt’s Problem

Theorem 2 [ Li + Pan, 2009].Let G be a finite quasiprimitive permutation group onΩ ,

and letR be a transitive metacyclic subgroup ofG. Then one of the following holds:

(a) G is an almost simple group, and either(G,Gω) = (An,An−1) or (Sn,Sn−1),

or (G,R,Gω) = (G,A,B) such thatR = A andGω = B as in Table I;

(b) G = (PSL(2, p)× PSL(2, p)).O whereO ≤ Z
2
2, R is regular, and either

p ≡ 3 (mod 4), R ∼= Z p(p+1)
2

:Zp−1
∼= (Zp:Z p−1

2
)×Dp+1, or

p ≡ 1 (mod 4), O ≥ Z2, andR ∼= Z p(p+1)
2

:Zp−1
∼= (Zp:Zp−1)× Z p+1

2
;

(c) G is primitive of product action type of degreen2 with socleT 2, andR = Z
2
n or

Z
2
m:Z4 with m = n

2
odd, andT = An, orPSL(d, q) with n = qd−1

q−1
, or

(T, n) = (PSL(2, 11), 11), (M11, 11) or (M23, 23).

(d) G is affine, as described in Theorem HA.
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TABLE I

row G A B conditions

1 Sp p:(p− 1) Sp−2, Sp−2 × S2

Ap.o p: p−1
2

Sp−2 × o o ≤ 2

2 PSL(d, q).o G(qd).o1 P1.o2, parabolic whereq = pf , and

PSL(d, q).o.2 G(qd).o1.2 P1.o2 o1o2 ∼= o ≤ f.(d, q − 1)

3 PGL(2, p) p:(p− 1) Zp+1, D2(p+1)

PSL(2, p).o p: p−1
2

.o1 D(p+1)o o1 ≤ o ≤ 2, p ≡ 3 (mod 4)

4 PSL(2, 11).o 11:5.o1 A4.o2 o1o2 = o ≤ 2

5 PSL(2, 11) 11, 11:5 A5

6 PSL(2, 29) 29:7 A5

7 PSL(2, p) p: p−1
2

A5 p = 11, 19, 29, 59

PGL(2, p) p:(p− 1) A5

8 PSL(2, 23) 23:11 S4

PGL(2, 23) 23:22 S4

( to be continued )
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TABLE I ( Continue )

9 PΓL(2, 16) 17:8 PSL(2, 4).4

10 PΓL(3, 4) (7:3)× S3 24:15:4

11 PSL(5, 2).o 31:(5× o) 26:(S3 × PSL(3, 2)) o ≤ 2

12 PSU(3, 8).32.o (3× 19:9).o1 (23+6:63:3).o2 o1o2 = o ≤ 2

13 PSU(4, 2).o 9:3.o1 24:A5.o o1 ≤ 2o ≤ 4

14 M11 11, 11:5 M10, M9.2

15 M12 6× 2 M11

M12.2 D24 M11

16 M22.2 D22 PSL(3, 4).2

17 M23 23, 23:11 M22, M21.2, 24.A7

18 M24 D24 M23
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B-group

• A groupR is called aB-group (named after Burnside) if

each primitive permutation group containingR as a regular

subgroup is necessarily 2-transitive.
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B-group

• A groupR is called aB-group (named after Burnside) if

each primitive permutation group containingR as a regular

subgroup is necessarily 2-transitive.

• Determining metacyclic B-groups has received much

attention.

• The next theorem give a classification of metacyclic
B-group.
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Classification of metacyclic B-groups

Theorem 3 [Li+ Pan, 2009].If a metacyclic groupR is not
a B-group, thenR is isomorphic to one of the following
groups, wherep is a prime:

(a) Zp:Z p−1
2

, Zp:Zp−1, Z29:Z7, Z57:Z9;

(b) Z p(p+1)
2

:Zp−1
∼= (Zp:Z p−1

2
)×Dp+1, wherep ≡ 3 (mod 4);

Z p(p+1)
2

:Zp−1
∼= Z p+1

2
× (Zp:Zp−1), wherep ≡ 1 (mod 4);

(c) Z
2
n, Z2

m:Z4 with m odd;

(d) R = Zp or Z2
p, orZ9:Z3, Z9:Z9, orZ8.Z2, Z4.Z4, Z8:Z8 or

Z16:Z16.
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Coset graph

• Definition. Let G be a group,H a subgroup, andH a subset of

G. The coset graphcos(G,H,HSH) is defined with the vertex

set[G : H], andHx is adjacent toHy iff yx−1 ∈ HSH.
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G. The coset graphcos(G,H,HSH) is defined with the vertex

set[G : H], andHx is adjacent toHy iff yx−1 ∈ HSH.

• Lemma 1.(1) Γ = cos(G,H,HSH) is connected iff

〈H,S〉 = G;

(2) Γ isG-edge-transitive iffΓ = cos(G,Gα, Gα{g, g
−1}Gα)

for someg ∈ G, andval(Γ ) = |Gα : Gα ∩G
g
α| or

2|Gα : Gα ∩G
g
α|.

• Lemma 2.For a coset graphΓ = Cos(G,H,H{g, g−1}H), if all

subgroups ofH which are isomorphic toH ∩Hg are conjugate

in H, then there existsf ∈ NG(H ∩Hg) such that

H{g, g−1}H = H{f, f−1}H.
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Proof of Theorem 1: Divided into four cases

• Let Γ beG-vertex-quasiprimitive edge-transitive metacirculants

onV , and letR ≤ Aut(Γ ) be transitive onV . By Theorem 2,

G ≤ Sym(V ) is of type diagonal, product action, almost simple

or affine.
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Proof of Theorem 1: Divided into four cases

• Let Γ beG-vertex-quasiprimitive edge-transitive metacirculants

onV , and letR ≤ Aut(Γ ) be transitive onV . By Theorem 2,

G ≤ Sym(V ) is of type diagonal, product action, almost simple

or affine.

• We thus divide naturally our discussion into four cases.

• Case 1.G is of diagonal type (including simple diagonal or

holomorph simple).

• Case 2.G is of product action type.

• Case 3.G is almost simple.

• Case 4.G is affine.
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Case 1.G is of diagonal type

Lemma 3.LetG be of diagonal type. Thensoc(G) = T 2

with T = PSL(2, p), andR = Zp
p+1
2
:Zp−1 is regular onV ,

and the following statements hold:

(a) Γ = Cay(T, S), whereS consists of a full conjugate

class of elementsg, g−1 of T ;

(b) AutΓ = (T × T ).22, andΓ is arc transitive;

(c) if Γ is G-locally primitive, theng = g−1 is an

involution, andΓ has valency1
2
p(p− 1) or 1

2
p(p+ 1).
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Case 2.G is of product action type

Lemma 4.LetG be primitive of product action type. Then

(a) soc(G) = T 2, whereT = An, PSL(d, q) with

n = qd−1
q−1

, PSL(2, 11) with n = 11, M11 with n = 11,

or M23 with n = 23.

(b) Γ ∼= Kn�Kn or Kn × Kn, wheren ≥ 5.

(c) If Γ is G-locally primitive, thenΓ = Kn × Kn, and

T 6= PSL(d, q) with d ≥ 3.
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Case 3.G is affine

Lemma 5.LetG be affine, with socleZd
p. Then one of the

following holds:

(a) G is 2-transitive, andΓ = Kpd;

(b) d = 2e, G = H ≀ S2, whereH is 2-transitive of degree

pe, andΓ = Kpe�Kpe orKpe × Kpe;

(c) Γ is a normal Cayley graph ofZd
p.
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Case 4.G is almost simple

We finally treat the almost simple case. Then(G,R) lies in

TABLE 1 above. By determining generalized orbitals of all

candidates there one by one, we finish the proof of Theorem
1 by following 6 lemmas.
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Case 4.G is almost simple: (G is not 2-dimensional linear group)

Lemma 6.Suppose thatT = soc(G) is not a2-dimensional linear

group. Then the following statements hold:

(1)Γ = line(Kp) or line(Kp) with p prime, and one of the following

holds:

(a)T = Ap or Sp, andTv = Sp−2 or Sp−2 × S2, respectively;

(b) p = 11, T = M11, andTv = M9.2;

(c) p = 23, T = M23, andTv = M21.2 or 24:A7.

(2)G = PΓL(3, 4), Γ is homomorphic toK21; moreover,Γ is not

locally primitive.

(3)G = PSL(5, 2), andΓ is the Grassmann graphG5(2) or the

complement, of which only the former is locally primitive.

(4) T = PSU(4, 2) orPSU(4, 2).2, andΓ is the Schläfli graph or its

complement, of which only the former is locally primitive.
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Case 4.G is almost simple:soc(G) = PSL(2, p)

Lemma 7.Let soc(G) = PSL(2, p), R = Zp:Z p−1
2

, and

Gv � Z p+1
2

. Then one of the following holds:

(a) G = PGL(2, p), Gv = Zp+1, Γ is of valencyp+ 1 or

2(p+ 1).

(b) G = PGL(2, p), Gv = D2(p+1), Γ is of valencyp+1
2

,

unique; orΓ is of valencyp+ 1, one ofp−1
2

.

Moreover, ifΓ is locally primitive, thenp ≡ 1 (mod 4),

andΓ is of prime valencyp+1
2

.
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Case 4.G is almost simple: (G,Gv) = (PSL(2, 11), A4)

Lemma 8.Let T = PSL(2, 11), andTv = A4. Then

(a) Γ is (G, 2)-arc transitive and of valency4, or

(b) G-arc transitive and of valency6, or 12, or

(c) G-half-transitive of valency12 or 24.

Moreover, ifΓ is locally primitive, thenΓ is 2-arc

transitive of valency4.
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Case 4.G is almost simple: (G,Gv) = (PSL(2, p), A5) with

p = 15, 29, 59

Lemma 9.Let G = PSL(2, p), wherep = 19, 29 or 59, and

Gv = A5. Then one of the following holds:

(a) G = PSL(2, 19), and eitherΓ is (G, 2)-arc transitive of

valency6, orΓ is G-arc transitive of valency20 or 30.

(b) G = PSL(2, 29), and eitherΓ is G-arc transitive of valency

12 or 30, orΓ isG-half transitive of valency40.

(c) G = PSL(2, 59), andΓ has valency6, 10, 12, 20, 24, 30 or

40.

Moreover, ifΓ is locally primitive, thenG = PSL(2, 19) or

PSL(2, 59), andΓ is (G, 2)-arc transitive of valency6.
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Case 4.G is almost simple: (G,Gv) = (PSL(2, 23), S4)

Lemma 10.ForG = PSL(2, 23) andGv = S4, the order

|V | = 253, then

(a) Γ is (G, 2)-arc transitive of valency4, or

(b) Γ is G-arc transitive of valency6 or 8, or

(c) Γ is G-half transitive of valency12 or 16.

If Γ is G-locally primitive, thenΓ is (G, 2)-arc

transitive of valency4.
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Case 4.G is almost simple: (G,Gv) = (PΓL(2, 16), (A5 ×

2).2)

Lemma 11.ForG = PΓL(2, 16) andGv = (A5 × 2).2, thenΓ is
arc-transitive and of valency12, 15 or 40, AutΓ = G, andΓ is
not locally primitive.
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Thank You!
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