Finite vertex-quasiprimitive edge-transitive metacirculants

Jiangmin Pan

School of Mathematics and Statistics Yunnan University, P. R. China

(Depending on joint works with C. H. Li)

• Graphs here are simple, finite, connected, and undirected.

- Graphs here are simple, finite, connected, and undirected.
- A graph Γ is called a metacirculant if there exists a metacyclic automorphism group R ≤ Aut(Γ) which is transitive on the vertex set of Γ. By definition, Cayley graphs of metacycilic groups are metacirculants. But the inverse is not necessarily true.

- Graphs here are simple, finite, connected, and undirected.
- A graph Γ is called a metacirculant if there exists a metacyclic automorphism group R ≤ Aut(Γ) which is transitive on the vertex set of Γ. By definition, Cayley graphs of metacycilic groups are metacirculants. But the inverse is not necessarily true.
- The "metacirculants" was initiaed by Alspach and Parsons (1982), which provides a rich source of many interesting families of graphs. In particular, the following is a long-standing open problem in algebraic graph theory.

- Graphs here are simple, finite, connected, and undirected.
- A graph Γ is called a metacirculant if there exists a metacyclic automorphism group R ≤ Aut(Γ) which is transitive on the vertex set of Γ. By definition, Cayley graphs of metacycilic groups are metacirculants. But the inverse is not necessarily true.
- The "metacirculants" was initiaed by Alspach and Parsons (1982), which provides a rich source of many interesting families of graphs. In particular, the following is a long-standing open problem in algebraic graph theory.
 Problem A. Characterise edge-transitive metacirculants.

Some known results: Special classes of metacirculants

[1] B. Alspach, M. Conder, D. Marusic and M. Y. Xu, A classification of 2-arc-transitive circulants, *J. Algebraic Combin.*5 (1996), no. 2, 83-86.

[2] I. Kovacs, Classifying arc-transitive circulants, *J. Algebraic Combin.* **20** (2004), 353-358.

[3] C. H. Li, Permutation groups with a cyclic regular subgroup and arc transitive circulants, *J. Algebraic Combin.* **21** (2005), 131-136.

Some known results (Continue)

[4] S. F. Du, A. Malnič and D. Marušič, Classification of
2-arc-transitive dihedrants, *J. Combin. Theory Ser. B* 98 (2008),
1349-1372.

[5] D. Marušič, On 2-arc-transitivity of Cayley graphs, *J. Combin. Theory Ser. B* 87 (2003), 162-196, and 96 (2006), 761-764.

[6] C. H. Li and H. Sims, On half-transitive metacirculant graphs of prime-power order, *J. Combin. Theory Ser. B* 81 (2001), 45-57.

[7] M. Y. Xu, Half-transitive graphs of prime-cube order, *J. Algebraic Combin.* **1** (1992), 275-282.

Some known results (Continue)

[8] D. Marušič and P. Šparl, On quartic half-arc-transitive metacirculants, *J. Algebraic Combin.* **28** (2008), 365-395.

[9] Chuixiang Zhou and Yan-Quan Feng, An infinite family of tetravalent half-arc-transitive graphs, *Discrete Math.* **306** (2006), 2205-2211.

[10] N. D. Tan, Cubic (m, n)-metacirculant graphs which are not Cayley graphs. *Discrete Math.* **154** (1996), no. 1-3, 237-244.

Classification

Theorem 1. Let Γ be a connected vertex-quasiprimitive edge-transitive metacirculants on V. Then one of the following holds:

- (a) $\Gamma = \mathsf{K}_n, \mathsf{K}_n \times \mathsf{K}_n, \text{ or } \mathsf{K}_n \Box \mathsf{K}_n.$
- (b) $\Gamma = line(K_p)$ and the complement.
- (c) $\Gamma = Cay(T, S)$, where T = PSL(2, p) and $S = \{g^T, (g^{-1})^T\}$ with $g \in T$, and G is of diagonal type.
- (d) G = PSL(2, p), and Γ is described in Lemma 7-9.
- (e) Four exceptional small groups: G = PΓL(2, 16), and G_v = A₅.Z₄, and Γ is arc-transitive and of valency 12, 15, or 40. G = PΓL(3, 4), G_v = AΓL(1, 2⁴), |V| = 126, and Γ is homomorphic to K₂₁. G = PSL(5, 2), and Γ is the Grassmann graph G₂(5, 2) or its complement. G = PSU(4, 2) or PSU(4, 2).2, and Γ is the Schläfli graph or its complement.

(f)
$$\Gamma = \text{Cay}(\mathbb{Z}_p^d, S)$$
 is a normal Cayley graph, where $p^d = p, p^2, 3^4, 2^4, 2^6$ or 2^8 .

• Observation 1. Each edge-transitive metacirculant is a multi-cover of a vertex-quasiprimitive or a vertex biquasiprimitive edge-transitive metacirculant (basic graph).

- Observation 1. Each edge-transitive metacirculant is a multi-cover of a vertex-quasiprimitive or a vertex biquasiprimitive edge-transitive metacirculant (basic graph).
- Observation 2. Each basic edge-transitive metacirculant is a generalized orbital graph of a quasiprimitive or a biquasiprimitive permutation group containing a metacyclic transitive subgroup.

- Observation 1. Each edge-transitive metacirculant is a multi-cover of a vertex-quasiprimitive or a vertex biquasiprimitive edge-transitive metacirculant (basic graph).
- Observation 2. Each basic edge-transitive metacirculant is a generalized orbital graph of a quasiprimitive or a biquasiprimitive permutation group containing a metacyclic transitive subgroup.
- Thus Problem A (characterizes edge-transitive metacirculants) is tightly related with following Problem.

- Observation 1. Each edge-transitive metacirculant is a multi-cover of a vertex-quasiprimitive or a vertex biquasiprimitive edge-transitive metacirculant (basic graph).
- Observation 2. Each basic edge-transitive metacirculant is a generalized orbital graph of a quasiprimitive or a biquasiprimitive permutation group containing a metacyclic transitive subgroup.
- Thus Problem A (characterizes edge-transitive metacirculants) is tightly related with following Problem.

Problem B. (Open problem of Wielandt 1949)Classifying quasiprimitive permutation groups containing a transitive metacyclic subgroup.

Research strategy

• Step 1. Classifying quasiprimitive permutation groups containing a transitive metacyclic subgroup.

Research strategy

- Step 1. Classifying quasiprimitive permutation groups containing a transitive metacyclic subgroup.
- Step 2. Classifying generalized orbital graphs of groups appeared in above step 1.

Solution of Wielandt's Problem

Theorem 2 [Li + Pan, 2009]. Let G be a finite quasiprimitive permutation group on Ω , and let R be a transitive metacyclic subgroup of G. Then one of the following holds:

(a) G is an almost simple group, and either $(G, G_{\omega}) = (A_n, A_{n-1})$ or (S_n, S_{n-1}) , or $(G, R, G_{\omega}) = (G, A, B)$ such that R = A and $G_{\omega} = B$ as in Table I;

(b)
$$G = (PSL(2, p) \times PSL(2, p)).O$$
 where $O \leq \mathbb{Z}_2^2$, R is regular, and either
 $p \equiv 3 \pmod{4}, R \cong \mathbb{Z}_{\frac{p(p+1)}{2}}:\mathbb{Z}_{p-1} \cong (\mathbb{Z}_p:\mathbb{Z}_{\frac{p-1}{2}}) \times D_{p+1}, \text{ or}$
 $p \equiv 1 \pmod{4}, O \geq \mathbb{Z}_2, \text{ and } R \cong \mathbb{Z}_{\frac{p(p+1)}{2}}:\mathbb{Z}_{p-1} \cong (\mathbb{Z}_p:\mathbb{Z}_{p-1}) \times \mathbb{Z}_{\frac{p+1}{2}};$

- (c) G is primitive of product action type of degree n^2 with socle T^2 , and $R = \mathbb{Z}_n^2$ or $\mathbb{Z}_m^2:\mathbb{Z}_4$ with $m = \frac{n}{2}$ odd, and $T = A_n$, or PSL(d,q) with $n = \frac{q^d 1}{q 1}$, or $(T, n) = (PSL(2, 11), 11), (M_{11}, 11)$ or $(M_{23}, 23)$.
- (d) G is affine, as described in Theorem HA.

TABLE I

row	G	A	В	conditions
1	S_p	p:(p-1)	$S_{p-2}, S_{p-2} \times S_2$	
	$A_p.o$	$p:\frac{p-1}{2}$	$S_{p-2} \times o$	$o \leq 2$
2	$\mathrm{PSL}(d,q).o$	$G(q^d).o_1$	$P_1.o_2$, parabolic	where $q = p^f$, and
	$\mathrm{PSL}(d,q).o.2$	$G(q^d).o_1.2$	$P_{1}.o_{2}$	$o_1 o_2 \cong o \le f.(d, q - 1)$
3	$\mathrm{PGL}(2,p)$	p:(p-1)	$\mathbb{Z}_{p+1}, \mathcal{D}_{2(p+1)}$	
	$\mathrm{PSL}(2,p).o$	$p:\frac{p-1}{2}.o_1$	$D_{(p+1)o}$	$o_1 \leq o \leq 2, \ p \equiv 3 \pmod{4}$
4	$\mathrm{PSL}(2,11).o$	$11:5.o_1$	$A_4.o_2$	$o_1 o_2 = o \le 2$
5	PSL(2,11)	11, 11:5	A_5	
6	PSL(2, 29)	29:7	A_5	
7	$\mathrm{PSL}(2,p)$	$p:\frac{p-1}{2}$	A_5	p = 11, 19, 29, 59
	$\mathrm{PGL}(2,p)$	p:(p-1)	A_5	
8	PSL(2,23)	23:11	S_4	
	$\mathrm{PGL}(2,23)$	23:22	S_4	

(to be continued)

TABLE I (Continue)

9	$P\Gamma L(2, 16)$	17:8	PSL(2, 4).4	
10	$P\Gamma L(3,4)$	$(7:3) \times S_3$	$2^4:15:4$	
11	$\mathrm{PSL}(5,2).o$	$31:(5 \times o)$	$2^6:(S_3 \times PSL(3,2))$	$o \leq 2$
12	$PSU(3, 8).3^2.o$	$(3 \times 19:9).o_1$	$(2^{3+6}:63:3).o_2$	$o_1 o_2 = o \le 2$
13	PSU(4,2).o	$9:3.o_1$	$2^4:A_5.o$	$o_1 \le 2o \le 4$
14	M_{11}	11, 11:5	$M_{10}, M_{9}.2$	
15	M_{12}	6×2	M_{11}	
	$M_{12}.2$	D_{24}	M_{11}	
16	$M_{22}.2$	D_{22}	$\mathrm{PSL}(3,4).2$	
17	M_{23}	23, 23:11	$M_{22}, M_{21}.2, 2^4.A_7$	
18	M_{24}	D_{24}	M_{23}	

B-group

• A group *R* is called a *B-group* (named after Burnside) if each primitive permutation group containing *R* as a regular subgroup is necessarily 2-transitive.

B-group

- A group *R* is called a *B-group* (named after Burnside) if each primitive permutation group containing *R* as a regular subgroup is necessarily 2-transitive.
- Determining metacyclic B-groups has received much attention.

B-group

- A group *R* is called a *B-group* (named after Burnside) if each primitive permutation group containing *R* as a regular subgroup is necessarily 2-transitive.
- Determining metacyclic B-groups has received much attention.
- The next theorem give a classification of metacyclic B-group.

Classification of metacyclic B-groups

Theorem 3 [Li + Pan, 2009]. If a metacyclic group R is not a B-group, then R is isomorphic to one of the following groups, where p is a prime:

(a) Z_p:Z_{p-1}/2, Z_p:Z_{p-1}, Z₂₉:Z₇, Z₅₇:Z₉;
(b) Z_{p(p+1)/2}:Z_{p-1} ≅ (Z_p:Z_{p-1}) × D_{p+1}, where p ≡ 3 (mod 4); Z_{p(p+1)/2}:Z_{p-1} ≅ Z_{p+1/2} × (Z_p:Z_{p-1}), where p ≡ 1 (mod 4);
(c) Z²_n, Z²_m:Z₄ with m odd;
(d) R = Z_p or Z²_p, or Z₉:Z₃, Z₉:Z₉, or Z₈.Z₂, Z₄.Z₄, Z₈:Z₈ or Z₁₆:Z₁₆.

Coset graph

Definition. Let G be a group, H a subgroup, and H a subset of G. The coset graph cos(G, H, HSH) is defined with the vertex set [G : H], and Hx is adjacent to Hy iff yx⁻¹ ∈ HSH.

Coset graph

- Definition. Let G be a group, H a subgroup, and H a subset of G. The coset graph cos(G, H, HSH) is defined with the vertex set [G : H], and Hx is adjacent to Hy iff yx⁻¹ ∈ HSH.
- Lemma 1. (1) Γ = cos(G, H, HSH) is connected iff ⟨H, S⟩ = G;
 (2) Γ is G-edge-transitive iff Γ = cos(G, G_α, G_α{g, g⁻¹}G_α) for some g ∈ G, and val(Γ) = |G_α : G_α ∩ G^g_α| or 2|G_α : G_α ∩ G^g_α|.

Coset graph

- Definition. Let G be a group, H a subgroup, and H a subset of G. The coset graph cos(G, H, HSH) is defined with the vertex set [G : H], and Hx is adjacent to Hy iff yx⁻¹ ∈ HSH.
- Lemma 1. (1) Γ = cos(G, H, HSH) is connected iff ⟨H, S⟩ = G;
 (2) Γ is G-edge-transitive iff Γ = cos(G, G_α, G_α{g, g⁻¹}G_α) for some g ∈ G, and val(Γ) = |G_α : G_α ∩ G^g_α| or 2|G_α : G_α ∩ G^g_α|.
- Lemma 2. For a coset graph Γ = Cos(G, H, H{g, g⁻¹}H), if all subgroups of H which are isomorphic to H ∩ H^g are conjugate in H, then there exists f ∈ N_G(H ∩ H^g) such that H{g, g⁻¹}H = H{f, f⁻¹}H.

 Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let R ≤ Aut(Γ) be transitive on V. By Theorem 2, G ≤ Sym(V) is of type diagonal, product action, almost simple or affine.

- Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let R ≤ Aut(Γ) be transitive on V. By Theorem 2, G ≤ Sym(V) is of type diagonal, product action, almost simple or affine.
- We thus divide naturally our discussion into four cases.

- Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let R ≤ Aut(Γ) be transitive on V. By Theorem 2, G ≤ Sym(V) is of type diagonal, product action, almost simple or affine.
- We thus divide naturally our discussion into four cases.
 - Case 1. *G* is of diagonal type (including simple diagonal or holomorph simple).

- Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let R ≤ Aut(Γ) be transitive on V. By Theorem 2, G ≤ Sym(V) is of type diagonal, product action, almost simple or affine.
- We thus divide naturally our discussion into four cases.
 - Case 1. *G* is of diagonal type (including simple diagonal or holomorph simple).
 - Case 2. *G* is of product action type.

- Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let R ≤ Aut(Γ) be transitive on V. By Theorem 2, G ≤ Sym(V) is of type diagonal, product action, almost simple or affine.
- We thus divide naturally our discussion into four cases.
 - Case 1. *G* is of diagonal type (including simple diagonal or holomorph simple).
 - Case 2. *G* is of product action type.
 - Case 3. *G* is almost simple.

- Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let R ≤ Aut(Γ) be transitive on V. By Theorem 2, G ≤ Sym(V) is of type diagonal, product action, almost simple or affine.
- We thus divide naturally our discussion into four cases.
 - Case 1. *G* is of diagonal type (including simple diagonal or holomorph simple).
 - Case 2. *G* is of product action type.
 - Case 3. *G* is almost simple.
 - Case 4. *G* is affine.

Case 1. *G* is of diagonal type

Lemma 3. Let G be of diagonal type. Then $soc(G) = T^2$ with T = PSL(2, p), and $R = \mathbb{Z}_{p\frac{p+1}{2}}:\mathbb{Z}_{p-1}$ is regular on V, and the following statements hold:

- (a) $\Gamma = Cay(T, S)$, where S consists of a full conjugate class of elements g, g^{-1} of T;
- (b) Aut $\Gamma = (T \times T).2^2$, and Γ is arc transitive;
- (c) if Γ is G-locally primitive, then $g = g^{-1}$ is an involution, and Γ has valency $\frac{1}{2}p(p-1)$ or $\frac{1}{2}p(p+1)$.

Case 2. *G* is of product action type

Lemma 4. Let G be primitive of product action type. Then

(a)
$$soc(G) = T^2$$
, where $T = A_n$, $PSL(d, q)$ with $n = \frac{q^d - 1}{q - 1}$, $PSL(2, 11)$ with $n = 11$, M_{11} with $n = 11$, or M_{23} with $n = 23$.

(b) $\Gamma \cong \mathsf{K}_n \Box \mathsf{K}_n$ or $\mathsf{K}_n \times \mathsf{K}_n$, where $n \ge 5$.

(c) If Γ is G-locally primitive, then $\Gamma = \mathsf{K}_n \times \mathsf{K}_n$, and $T \neq \mathrm{PSL}(d,q)$ with $d \geq 3$.

Lemma 5. Let G be affine, with socle \mathbb{Z}_p^d . Then one of the following holds:

(a) G is 2-transitive, and $\Gamma = \mathsf{K}_{p^d}$;

- (b) $d = 2e, G = H \wr S_2$, where H is 2-transitive of degree p^e , and $\Gamma = \mathsf{K}_{p^e} \Box \mathsf{K}_{p^e}$ or $\mathsf{K}_{p^e} \times \mathsf{K}_{p^e}$;
- (c) Γ is a normal Cayley graph of \mathbb{Z}_p^d .

We finally treat the almost simple case. Then (G, R) lies in TABLE 1 above. By determining generalized orbitals of all candidates there one by one, we finish the proof of Theorem 1 by following 6 lemmas.

Case 4. *G* is almost simple: (*G* is not 2-dimensional linear group)

Lemma 6. Suppose that T = soc(G) is not a 2-dimensional linear group. Then the following statements hold: (1) $\Gamma = line(K_p)$ or $\overline{line}(K_p)$ with p prime, and one of the following holds:

(a)
$$T = A_p$$
 or S_p , and $T_v = S_{p-2}$ or $S_{p-2} \times S_2$, respectively;
(b) $p = 11$, $T = M_{11}$, and $T_v = M_9.2$;
(c) $p = 23$, $T = M_{23}$, and $T_v = M_{21}.2$ or $2^4:A_7$.
(2) $G = P\Gamma L(3, 4)$, Γ is homomorphic to K_{21} ; moreover, Γ is not
locally primitive.

(3) G = PSL(5,2), and Γ is the Grassmann graph G₅(2) or the complement, of which only the former is locally primitive.
(4) T = PSU(4,2) or PSU(4,2).2, and Γ is the Schläfli graph or its complement, of which only the former is locally primitive.

Case 4. *G* is almost simple: soc(G) = PSL(2, p)

Lemma 7. Let soc(G) = PSL(2, p), R = Z_p:Z_{p-1/2}, and G_v ▷ Z_{p+1/2}. Then one of the following holds:
(a) G = PGL(2, p), G_v = Z_{p+1}, Γ is of valency p + 1 or 2(p+1).

(b) $G = PGL(2, p), G_v = D_{2(p+1)}, \Gamma$ is of valency $\frac{p+1}{2}$, unique; or Γ is of valency p + 1, one of $\frac{p-1}{2}$.

Moreover, if Γ is locally primitive, then $p \equiv 1 \pmod{4}$, and Γ is of prime valency $\frac{p+1}{2}$. **Case 4.** *G* is almost simple: $(G, G_v) = (PSL(2, 11), A_4)$

Lemma 8. Let T = PSL(2, 11), and $T_v = A_4$. Then

- (a) Γ is (G, 2)-arc transitive and of valency 4, or
- (b) G-arc transitive and of valency 6, or 12, or
- (c) G-half-transitive of valency 12 or 24.
 Moreover, if Γ is locally primitive, then Γ is 2-arc transitive of valency 4.

Case 4. *G* is almost simple: $(G, G_v) = (PSL(2, p), A_5)$ with p = 15, 29, 59

Lemma 9. Let G = PSL(2, p), where p = 19, 29 or 59, and $G_v = A_5$. Then one of the following holds:

- (a) G = PSL(2, 19), and either Γ is (G, 2)-arc transitive of valency 6, or Γ is G-arc transitive of valency 20 or 30.
- (b) G = PSL(2, 29), and either Γ is G-arc transitive of valency 12 or 30, or Γ is G-half transitive of valency 40.
- (c) G = PSL(2, 59), and Γ has valency 6, 10, 12, 20, 24, 30 or 40.

Moreover, if Γ is locally primitive, then G = PSL(2, 19) or PSL(2, 59), and Γ is (G, 2)-arc transitive of valency 6.

Case 4. *G* is almost simple: $(G, G_v) = (PSL(2, 23), S_4)$

Lemma 10. For G = PSL(2, 23) and $G_v = S_4$, the order |V| = 253, then

- (a) Γ is (G, 2)-arc transitive of valency 4, or
- (b) Γ is G-arc transitive of valency 6 or 8, or
- (c) Γ is G-half transitive of valency 12 or 16.
 If Γ is G-locally primitive, then Γ is (G, 2)-arc

transitive of valency 4.

Case 4. *G* is almost simple: $(G, G_v) = (P\Gamma L(2, 16), (A_5 \times 2).2)$

Lemma 11. For $G = P\Gamma L(2, 16)$ and $G_v = (A_5 \times 2).2$, then Γ is arc-transitive and of valency 12, 15 or 40, Aut $\Gamma = G$, and Γ is not locally primitive.

Thank You!