Finite vertex-quasiprimitive
edge-transitive metacirculants

Jiangmin Pan

School of Mathematics and Satistics
Yunnan University, P. R. China

( Depending on joint works with C. H. Li )

—n. 1/26



Introduction

Graphs here are simple, finite, connected, and undirected.

—n. 2/26



Introduction

Graphs here are simple, finite, connected, and undirected.

A graph!’ is called a metacirculant if there exists a
metacyclic automorphism group < Aut(/") which is
transitive on the vertex set @f. By definition, Cayley
graphs of metacycilic groups are metacirculants. But the
Inverse is not necessarily true.

—n. 2/26



Introduction
Graphs here are simple, finite, connected, and undirected.

A graph!’ is called a metacirculant if there exists a
metacyclic automorphism group < Aut(/") which is
transitive on the vertex set @f. By definition, Cayley
graphs of metacycilic groups are metacirculants. But the
Inverse is not necessarily true.

The "metacirculants” was initiaed by Alspach and Parsons
(1982), which provides a rich source of many interesting
families of graphs. In particular, the following is a
long-standing open problem in algebraic graph theory.

—n. 2/26



Introduction
Graphs here are simple, finite, connected, and undirected.

A graph!’ is called a metacirculant if there exists a
metacyclic automorphism group < Aut(/") which is
transitive on the vertex set @f. By definition, Cayley
graphs of metacycilic groups are metacirculants. But the
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The "metacirculants” was initiaed by Alspach and Parsons
(1982), which provides a rich source of many interesting
families of graphs. In particular, the following is a
long-standing open problem in algebraic graph theory.

Problem A. Characterise edge-transitive metacirculants.
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Classification

Theorem 1.Let I' be a connected vertex-quasiprimitive edge-transitiveamegulants
on V. Then one of the following holds:

@ I' =Ky, Ky x Ky, orK,OK,.
(b) I' = line(Ky) and the complement.

(c) I = Cay(T,S), whereT = PSL(2,p) andS = {g7, (¢~ )T} withg € T, and
G is of diagonal type.

(d) G = PSL(2,p),andI" is described in Lemma 7-9.

(e) Four exceptional small groups:
G = PI'L(2,16), andG, = A5.Z4, and is arc-transitive and of valency
12, 15, or40.
G = PT'L(3,4), G, = ATL(1,2%),
K21.
G = PSL(5,2), andI" is the Grassmann graphs (5, 2) or its complement.
G = PSU(4,2) orPSU(4, 2).2, and " is the Schlafli graph or its
complement.

() I = Cay(Z%,S)is anormal Cayley graph, wheté = p, p2, 3%, 24, 26 or 28,

V| = 126, andI" is homomorphic to
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Observations

Observation 1Each edge-transitive metacirculant is a
multi-cover of a vertex-quasiprimitive or a vertex
biquasiprimitive edge-transitive metacirculant (basic

graph).
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Observations

Observation 1Each edge-transitive metacirculant is a
multi-cover of a vertex-quasiprimitive or a vertex
biquasiprimitive edge-transitive metacirculant (basic

graph).

Observation 2Each basic edge-transitive metacirculant is a
generalized orbital graph of a quasiprimitive or a
biquasiprimitive permutation group containing a metaicycl
transitive subgroup.

ThusProblem A(characterizes edge-transitive
metacirculants) is tightly related with following Problem

Problem B. (Open problem of Wielandt 1949)
Classifying quasiprimitive permutation groups contagnan
transitive metacyclic subgroup.
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Research strategy

Step 1. Classifying quasiprimitive permutation groups
containing a transitive metacyclic subgroup.
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Research strategy

Step 1. Classifying quasiprimitive permutation groups
containing a transitive metacyclic subgroup.

Step 2. Classifying generalized orbital graphs of groups
appeared in above step 1.
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Solution of Wielandt’'s Problem

Theorem 2 [ Li + Pan, 2009].Let GG be a finite quasiprimitive permutation group o)
and letR be a transitive metacyclic subgroup@f Then one of the following holds:

(a) G is an almost simple group, and eitér, Go,) = (An, Apn—1) Or (Sn,Sn—1),
or (G, R,G,) = (G, A, B) such thatR = A andG,, = B as in Table I,

(b) G = (PSL(2,p) x PSL(2,p)).0 whereO < Z3, Ris regular, and either
p = 3 (mod 4), R = Zp(p_|_1) :Zp—l = (ZprT_l) X Dp_|_1, or
2
p=1(mod4),0 > Zy,andR 2 Z ,(pt1) Lp—1 = (Lp:Zp-1) X Lpy1;
2 2

(c) G is primitive of product action type of degree with socleT?, andR = Z?2 or
72,:Zs with m = 2 odd, andl’ = Ay, or PSL(d, ¢) with n = <=L, or
(T,n) = (PSL(2,11),11), (My1,11) or (M23, 23).

(d) G is affine, as described in Theorem HA.
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TABLE |

row | G A B conditions
1 | Sy p:(p—1) Sp—2, Sp—2 X S2
Ap.0 p:p—;1 Sp—2 X 0 o<2
2 | PSL(d,q).0 | G(q%).01 P .09, parabolic | whereq = p/, and
PSL(d, q).0.2 | G(¢%).01.2 | Pi.02 0102 20< f.(d,g—1)
3 | PGL(2,p) p:(p—1) | Zpt1, Dapy1)
PSL(2,p).o p:% 01 D(p+1)0 01 <0<2, p=3(mod4)
4 PSL(2,11).0 | 11:5.01 Ay.09 0102 =0 < 2
5 | PSL(2,11) | 11, 11:5 | As
6 | PSL(2,29) | 29:7 As
7 | PSL(2,p) o As p=11,19,29, 59
PGL(2,p) pip—1) | As
8 | PSL(2,23) | 23:11 Sy
PGL(2,23) | 23:22 Sy

( to be continued )
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TABLE | ( Continue)

9 | PI'L(2,16) 17:8 PSL(2,4).4
10 | PI'L(3,4) (7:3) x S3 24:15:4
11 | PSL(5,2).0 31:(5 x o) 20:(S3 x PSL(3,2)) | 0 < 2
12 | PSU(3,8).3%.0 | (3 x 19:9).01 | (231%:63:3).02 0109 = 0 < 2
13 | PSU(4,2).0 9:3.01 24:A5.0 01 < 20<4
14 | Mg 11, 11:5 Mjig, Mg.2
15 | Mo 6 x 2 M1
Mi9.2 Doa Mi11
16 | Mao.2 Dos PSL(3,4).2
17 | Mos 23, 23:11 Maa, Ma1.2, 24. A7
18 | May Doy Mas
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B-group

A group R is called aB-group (named after Burnside) if
each primitive permutation group containifigas a regular
subgroup is necessarily 2-transitive.
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B-group

A group R is called aB-group (named after Burnside) if
each primitive permutation group containifigas a regular
subgroup is necessarily 2-transitive.

Determining metacyclic B-groups has received much
attention.

The next theorem give a classification of metacyclic
B-group.
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Classification of metacyclic B-groups

Theorem 3 [Li+ Pan, 2009]lf a metacyclic group? is not
a B-group, them? is isomorphic to one of the following
groups, where is a prime:
(a) Zp:ZpT—l, ZpZZp_l, 229227, Z57ZZQ;
B) Zpwsr)Zyp—1 = (Zp:Zp-1) X Dpy1, Wherep = 3 (mod 4);
2 2
Lipps1) Lop—1 = Lipt1 X (Zp:Zp—1), Wherep =1 (mod 4);
p(pt1) t

(c) 72,72 :7.4 with m odd;

(d) R = Zp or ZQ, Or Zg:43, Lg:2lg, OF 2.8 . 2o, Loy Ly, 2.8:7.8 OF
Zl6:Zl6-
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Coset graph

Definition. Let G be a groupH a subgroup, andl a subset of
GG. The coset graphbos(G, H, HS H) is defined with the vertex
set[G : H|, andHz is adjacent tady iff yo=! € HSH.
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Lemma 1.(1) I' = cos(G, H, HS H) is connected iff
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Coset graph

Definition. Let G be a groupH a subgroup, andl a subset of
GG. The coset graphbos(G, H, HS H) is defined with the vertex
set[G : H|, andHz is adjacent tady iff yo=! € HSH.

Lemma 1.(1) I' = cos(G, H, HS H) is connected iff

(H,S) = G;

(2) I is G-edge-transitive iffl" = cos(G, Go, Ga{g, g7 }Go)
for someg € G, andval(I') = |G, : G4 N G%| or

2|Gq : Go NG

Lemma 2.For a coset grapli = Cos(G, H, H{g,g '} H), if all
subgroups off which are isomorphic téf N HY are conjugate
in H, then there existg € Ng(H N HY) such that

H{g,g~'}H = H{f, f~'}H.
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Proof of Theorem 1: Divided into four cases

Let I" be G-vertex-quasiprimitive edge-transitive metacirculants
onV, and letR < Aut(I") be transitive orl/. By Theorem 2,

G < Sym(V') is of type diagonal, product action, almost simple
or affine.
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Proof of Theorem 1: Divided into four cases

Let I" be G-vertex-quasiprimitive edge-transitive metacirculants
onV, and letR < Aut(I") be transitive orl/. By Theorem 2,

G < Sym(V') is of type diagonal, product action, almost simple
or affine.

We thus divide naturally our discussion into four cases.
Case 1 is of diagonal type (including simple diagonal or
holomorph simple).
Case 2 is of product action type.
Case 3G Is almost simple.

Case 4G is affine.
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Case 1.G Is of diagonal type

Lemma 3.Let G be of diagonal type. Thesoc(G) = T
with 7' = PSL(2,p), andR = Z, p1: Ly IS regular onV/,
and the following statements hold

(a) I' = Cay(T,S), whereS consists of a full conjugate
class of elementg, g~ of T';

(b) Autl’ = (T x T).2%, and[ is arc transitive;

(c) if I' is G-locally primitive, theng = ¢~ is an
involution, and!” has valencyp(p — 1) or 2p(p + 1).
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Case 2.G Is of product action type

Lemma 4.Let G be primitive of product action type. Then
(@) soc(G) = T7, whereT = A,,, PSL(d, q) with
=1 PSL(2,11) with n = 11, My, with n = 11,

or Mos with n = 23.
(b) I' = K,LK, orK, x K,, wheren > 5.

(c) If I' is G-locally primitive, thenl” = K,, x K,,, and
T # PSL(d, q) with d > 3.

mn —
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Case 3.G Is affine

Lemma 5.Let G be affine, with socl@g. Then one of the

following holds:

(@) G is2-transitive, and’ = Kq;

(b) d =2e, G = HS,, WhereH is 2-transitive of degree
p¢ andl’ = KK e or Kye X Kpe;

(c) I'is anormal Cayley graph &.
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Case 4.GG Is almost simple

We finally treat the almost simple case. THéAh R) lies in
TABLE 1 above. By determining generalized orbitals of all

candidates there one by one, we finish the proof of Theorem
1 by following 6 lemmas.
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Case 4.(G 1s almost simple: (G is not 2-dimensional linear group)

Lemma 6.Suppose thdl’ = soc(G) is not a2-dimensional linear
group. Then the following statements hold:

(LI = line(K,) or line(K,) with p prime, and one of the following
holds:

(@)T = A, orS,, andT;, = S,_2 0rS,_2 X Sa, respectively;

(b)p =11,T = My, andT,, = My.2;

(C)p = 23, T = Mas, andT,, = My;.2 or 24:A-.

(2) G = PI'L(3,4), I' is homomorphic tdKs;; moreover,l” is not
locally primitive.

(3) G = PSL(5,2), and" is the Grassmann grayhs(2) or the
complement, of which only the former is locally primitive.

(4)T = PSU(4,2) or PSU(4, 2).2, and!" is the Schlafli graph or its
complement, of which only the former is locally primitive.

—n. 20/26



Case 4.G is almost simple:soc(G) = PSL(2, p)

Lemma 7.Letsoc(G) = PSL(2,p), R = LyLip_, and

G, > ZpTH. Then one of the following holds:

(a) G =PGL(2,p), G, = Z,.1, I is of valencyp + 1 or
2(p +1).

(b) G =PGL(2,p), G, = Doy, I is of valencyZi:,
unique; orl is of valencyp + 1, one of 2.

Moreover, ifI" is locally primitive, therp = 1 (mod 4),
and " is of prime valency:".
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Case 4.G' is almost simple: (G, G,) = (PSL(2,11), Ay)

Lemma 8.LetT = PSL(2,11), andT, = A4. Then

(a) I'is (G, 2)-arc transitive and of valency, or
(b) G-arc transitive and of valendy, or 12, or
(c) G-half-transitive of valency 2 or 24.

Moreover, ifI" is locally primitive, then!' is 2-arc
transitive of valency.
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Case 4. G is almost simple: (G, G,) = (PSL(2,p), As) with
p = 15,29, 59

Lemma 9.Let G = PSL(2, p), wherep = 19, 29 or 59, and

G, = As. Then one of the following holds:

(a) G = PSL(2,19), and eitherl" is (G, 2)-arc transitive of
valencyo6, or I' is GG-arc transitive of valencg0 or 30.

(b) G = PSL(2,29), and eitherl" is G-arc transitive of valency
12 or 30, or I' is G-half transitive of valency0.

(c) G = PSL(2,59), andI" has valency, 10, 12, 20, 24, 30 or
40.

Moreover, ifI" is locally primitive, thenG = PSL(2, 19) or
PSL(2,59), andl' is (G, 2)-arc transitive of valencg.
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Case 4.G is almost simple: (G, G,) = (PSL(2,23), 54)

Lemma 10.For G = PSL(2,23) andG, = Sy, the order
V| = 253, then

(a) I'is (G, 2)-arc transitive of valency, or

(b) I'is G-arc transitive of valencg or 8, or

(c) I'is G-half transitive of valency2 or 16.

If [" is G-locally primitive, then!" is (G, 2)-arc
transitive of valency.

—n. 24/26



Case 4.G Is almost simple: (G,G,) = (PTL(2,16), (A5 x
2).2)

Lemma 11.ForG = PT'L(2,16) andG, = (A5 x 2).2, then['is
arc-transitive and of valenc\2, 15 or 40, Autl" = GG, andI' is
not locally primitive.
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Thank You!
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