Finite vertex-quasiprimitive edge-transitive metacirculants

Jiangmin Pan

School of Mathematics and Statistics
Yunnan University, P. R. China
(Depending on joint works with C. H. Li)

Introduction

- Graphs here are simple, finite, connected, and undirected.

Introduction

- Graphs here are simple, finite, connected, and undirected.
- A graph Γ is called a metacirculant if there exists a metacyclic automorphism group $R \leq \operatorname{Aut}(\Gamma)$ which is transitive on the vertex set of Γ. By definition, Cayley graphs of metacycilic groups are metacirculants. But the inverse is not necessarily true.

Introduction

- Graphs here are simple, finite, connected, and undirected.
- A graph Γ is called a metacirculant if there exists a metacyclic automorphism group $R \leq \operatorname{Aut}(\Gamma)$ which is transitive on the vertex set of Γ. By definition, Cayley graphs of metacycilic groups are metacirculants. But the inverse is not necessarily true.
- The "metacirculants" was initiaed by Alspach and Parsons (1982), which provides a rich source of many interesting families of graphs. In particular, the following is a long-standing open problem in algebraic graph theory.

Introduction

- Graphs here are simple, finite, connected, and undirected.
- A graph Γ is called a metacirculant if there exists a metacyclic automorphism group $R \leq \operatorname{Aut}(\Gamma)$ which is transitive on the vertex set of Γ. By definition, Cayley graphs of metacycilic groups are metacirculants. But the inverse is not necessarily true.
- The "metacirculants" was initiaed by Alspach and Parsons (1982), which provides a rich source of many interesting families of graphs. In particular, the following is a long-standing open problem in algebraic graph theory.
Problem A. Characterise edge-transitive metacirculants.

Some known results: Special classes of metacirculants

[1] B. Alspach, M. Conder, D. Marusic and M. Y. Xu, A classification of 2-arc-transitive circulants, J. Algebraic Combin. 5 (1996), no. 2, 83-86.
[2] I. Kovacs, Classifying arc-transitive circulants, J. Algebraic Combin. 20 (2004), 353-358.
[3] C. H. Li, Permutation groups with a cyclic regular subgroup and arc transitive circulants, J. Algebraic Combin. 21 (2005), 131-136.

Some known results (Continue)

[4] S. F. Du, A. Malnič and D. Marušič, Classification of 2-arc-transitive dihedrants, J. Combin. Theory Ser. B 98 (2008), 1349-1372.
[5] D. Marušič, On 2-arc-transitivity of Cayley graphs, J. Combin. Theory Ser. B 87 (2003), 162-196, and 96 (2006), 761-764.
[6] C. H. Li and H. Sims, On half-transitive metacirculant graphs of prime-power order, J. Combin. Theory Ser. B $\mathbf{8 1}$ (2001), 45-57.
[7] M. Y. Xu, Half-transitive graphs of prime-cube order, J. Algebraic Combin. 1 (1992), 275-282.

Some known results (Continue)

[8] D. Marušič and P. Šparl, On quartic half-arc-transitive metacirculants, J. Algebraic Combin. 28 (2008), 365-395.
[9] Chuixiang Zhou and Yan-Quan Feng, An infinite family of tetravalent half-arc-transitive graphs, Discrete Math. 306 (2006), 2205-2211.
[10] N. D. Tan, Cubic (m, n)-metacirculant graphs which are not Cayley graphs. Discrete Math. 154 (1996), no. 1-3, 237-244.

Classification

Theorem 1. Let Γ be a connected vertex-quasiprimitive edge-transitive metacirculants on V. Then one of the following holds:
(a) $\quad \Gamma=\mathrm{K}_{n}, \mathrm{~K}_{n} \times \mathrm{K}_{n}$, or $\mathrm{K}_{n} \square \mathrm{~K}_{n}$.
(b) $\quad \Gamma=\operatorname{line}\left(\mathrm{K}_{p}\right)$ and the complement.
(c) $\quad \Gamma=\operatorname{Cay}(T, S)$, where $T=\operatorname{PSL}(2, p)$ and $S=\left\{g^{T},\left(g^{-1}\right)^{T}\right\}$ with $g \in T$, and G is of diagonal type.
(d) $\quad G=\operatorname{PSL}(2, p)$, and Γ is described in Lemma 7-9.
(e) Four exceptional small groups:
$G=\mathrm{P} \Gamma \mathrm{L}(2,16)$, and $G_{v}=\mathrm{A}_{5} \cdot \mathbb{Z}_{4}$, and Γ is arc-transitive and of valency 12,15 , or 40.
$G=\operatorname{P\Gamma L}(3,4), G_{v}=\operatorname{A\Gamma L}\left(1,2^{4}\right),|V|=126$, and Γ is homomorphic to K_{21}.
$G=\operatorname{PSL}(5,2)$, and Γ is the Grassmann graph $\mathrm{G}_{2}(5,2)$ or its complement. $G=\operatorname{PSU}(4,2)$ or $\operatorname{PSU}(4,2) .2$, and Γ is the Schläfli graph or its complement.
(f) $\quad \Gamma=\operatorname{Cay}\left(\mathbb{Z}_{p}^{d}, S\right)$ is a normal Cayley graph, where $p^{d}=p, p^{2}, 3^{4}, 2^{4}, 2^{6}$ or 2^{8}.

Observations

- Observation 1. Each edge-transitive metacirculant is a multi-cover of a vertex-quasiprimitive or a vertex biquasiprimitive edge-transitive metacirculant (basic graph).

Observations

- Observation 1. Each edge-transitive metacirculant is a multi-cover of a vertex-quasiprimitive or a vertex biquasiprimitive edge-transitive metacirculant (basic graph).
- Observation 2. Each basic edge-transitive metacirculant is a generalized orbital graph of a quasiprimitive or a biquasiprimitive permutation group containing a metacyclic transitive subgroup.

Observations

- Observation 1. Each edge-transitive metacirculant is a multi-cover of a vertex-quasiprimitive or a vertex biquasiprimitive edge-transitive metacirculant (basic graph).
- Observation 2. Each basic edge-transitive metacirculant is a generalized orbital graph of a quasiprimitive or a biquasiprimitive permutation group containing a metacyclic transitive subgroup.
- Thus Problem A (characterizes edge-transitive metacirculants) is tightly related with following Problem.

Observations

- Observation 1. Each edge-transitive metacirculant is a multi-cover of a vertex-quasiprimitive or a vertex biquasiprimitive edge-transitive metacirculant (basic graph).
- Observation 2. Each basic edge-transitive metacirculant is a generalized orbital graph of a quasiprimitive or a biquasiprimitive permutation group containing a metacyclic transitive subgroup.
- Thus Problem A (characterizes edge-transitive metacirculants) is tightly related with following Problem.

Problem B. (Open problem of Wielandt 1949)
Classifying quasiprimitive permutation groups containing a transitive metacyclic subgroup.

Research strategy

- Step 1. Classifying quasiprimitive permutation groups containing a transitive metacyclic subgroup.

Research strategy

- Step 1. Classifying quasiprimitive permutation groups containing a transitive metacyclic subgroup.
- Step 2. Classifying generalized orbital graphs of groups appeared in above step 1.

Solution of Wielandt's Problem

Theorem 2 [Li + Pan, 2009]. Let G be a finite quasiprimitive permutation group on Ω, and let R be a transitive metacyclic subgroup of G. Then one of the following holds:
(a) G is an almost simple group, and either $\left(G, G_{\omega}\right)=\left(\mathrm{A}_{n}, \mathrm{~A}_{n-1}\right)$ or $\left(\mathrm{S}_{n}, \mathrm{~S}_{n-1}\right)$, or $\left(G, R, G_{\omega}\right)=(G, A, B)$ such that $R=A$ and $G_{\omega}=B$ as in Table I;
(b) $\quad G=(\operatorname{PSL}(2, p) \times \operatorname{PSL}(2, p)) \cdot O$ where $O \leq \mathbb{Z}_{2}^{2}, R$ is regular, and either

$$
\begin{aligned}
& p \equiv 3(\bmod 4), R \cong \mathbb{Z}_{\frac{p(p+1)}{2}}^{2}: \mathbb{Z}_{p-1} \cong\left(\mathbb{Z}_{p}: \mathbb{Z}_{\frac{p-1}{2}}\right) \times \mathrm{D}_{p+1}, \text { or } \\
& p \equiv 1(\bmod 4), O \geq \mathbb{Z}_{2}, \text { and } R \cong \mathbb{Z}_{\frac{p(p+1)}{2}}: \mathbb{Z}_{p-1} \cong\left(\mathbb{Z}_{p}: \mathbb{Z}_{p-1}\right) \times \mathbb{Z}_{\frac{p+1}{2}}
\end{aligned}
$$

(c) G is primitive of product action type of degree n^{2} with socle T^{2}, and $R=\mathbb{Z}_{n}^{2}$ or $\mathbb{Z}_{m}^{2}: \mathbb{Z}_{4}$ with $m=\frac{n}{2}$ odd, and $T=\mathrm{A}_{n}$, or $\operatorname{PSL}(d, q)$ with $n=\frac{q^{d}-1}{q-1}$, or $(T, n)=(\operatorname{PSL}(2,11), 11),\left(\mathrm{M}_{11}, 11\right)$ or $\left(\mathrm{M}_{23}, 23\right)$.
(d) G is affine, as described in Theorem HA.

TABLE I

row	G	A	B	conditions
1	$\mathrm{~S}_{p}$	$p:(p-1)$	$\mathrm{S}_{p-2}, \mathrm{~S}_{p-2} \times \mathrm{S}_{2}$	
	$\mathrm{~A}_{p} . o$	$p: \frac{p-1}{2}$	$\mathrm{~S}_{p-2} \times o$	$o \leq 2$
2	$\operatorname{PSL}(d, q) . o$	$G\left(q^{d}\right) . o_{1}$	$P_{1} . o_{2}$, parabolic	where $q=p^{f}$, and
	$\operatorname{PSL}(d, q) . o .2$	$G\left(q^{d}\right) . o_{1} \cdot 2$	$P_{1} . o_{2}$	$o_{1} o_{2} \cong o \leq f .(d, q-1)$
3	$\operatorname{PGL}(2, p)$	$p:(p-1)$	$\mathbb{Z}_{p+1}, \mathrm{D}_{2(p+1)}$	
	$\operatorname{PSL}(2, p) . o$	$p: \frac{p-1}{2} \cdot o_{1}$	$\mathrm{D}_{(p+1) o}$	$o_{1} \leq o \leq 2, p \equiv 3(\bmod 4)$
4	$\operatorname{PSL}(2,11) . o$	$11: 5 \cdot o_{1}$	$\mathrm{~A}_{4} \cdot o_{2}$	$o_{1} o_{2}=o \leq 2$
5	$\operatorname{PSL}(2,11)$	$11,11: 5$	$\mathrm{~A}_{5}$	
6	$\operatorname{PSL}(2,29)$	$29: 7$	$\mathrm{~A}_{5}$	
7	$\operatorname{PSL}(2, p)$	$p: \frac{p-1}{2}$	$\mathrm{~A}_{5}$	$p=11,19,29,59$
	$\operatorname{PGL}(2, p)$	$p:(p-1)$	A_{5}	$\mathrm{~S}_{4}$
8	$\operatorname{PSL}(2,23)$	$23: 11$	$\mathrm{~S}_{4}$	

(to be continued)

TABLE I (Continue)

9	$\mathrm{P} \Gamma \mathrm{L}(2,16)$	$17: 8$	$\mathrm{PSL}(2,4) .4$	
10	$\mathrm{P} \Gamma \mathrm{L}(3,4)$	$(7: 3) \times \mathrm{S}_{3}$	$2^{4}: 15: 4$	
11	$\mathrm{PSL}(5,2) . o$	$31:(5 \times o)$	$2^{6}:\left(\mathrm{S}_{3} \times \operatorname{PSL}(3,2)\right)$	$o \leq 2$
12	$\mathrm{PSU}(3,8) .3^{2} . o$	$(3 \times 19: 9) . o_{1}$	$\left(2^{3+6}: 63: 3\right) . o_{2}$	$o_{1} o_{2}=o \leq 2$
13	$\mathrm{PSU}(4,2) . o$	$9: 3 . o_{1}$	$2^{4}: \mathrm{A}_{5} \cdot o$	$o_{1} \leq 2 o \leq 4$
14	M_{11}	$11,11: 5$	$\mathrm{M}_{10}, \mathrm{M}_{9} \cdot 2$	
15	M_{12}	6×2	M_{11}	
	$\mathrm{M}_{12} \cdot 2$	D_{24}	M_{11}	
16	$\mathrm{M}_{22} \cdot 2$	D_{22}	$\mathrm{PSL}_{2}(3,4) .2$	
17	M_{23}	$23,23: 11$	$\mathrm{M}_{22}, \mathrm{M}_{21} \cdot 2,2^{4} \cdot \mathrm{~A}_{7}$	
18	M_{24}	D_{24}	M_{23}	

B-group

- A group R is called a B-group (named after Burnside) if each primitive permutation group containing R as a regular subgroup is necessarily 2 -transitive.

B-group

- A group R is called a B-group (named after Burnside) if each primitive permutation group containing R as a regular subgroup is necessarily 2 -transitive.
- Determining metacyclic B-groups has received much attention.

B-group

- A group R is called a B-group (named after Burnside) if each primitive permutation group containing R as a regular subgroup is necessarily 2 -transitive.
- Determining metacyclic B-groups has received much attention.
- The next theorem give a classification of metacyclic B-group.

Classification of metacyclic B-groups

Theorem 3 [Li + Pan, 2009]. If a metacyclic group R is not a B-group, then R is isomorphic to one of the following groups, where p is a prime:
(a) $\mathbb{Z}_{p}: \mathbb{Z}_{\frac{p-1}{2}}, \mathbb{Z}_{p}: \mathbb{Z}_{p-1}, \mathbb{Z}_{29}: \mathbb{Z}_{7}, \mathbb{Z}_{57}: \mathbb{Z}_{9} ;$
(b) $\mathbb{Z}_{\frac{p(p+1)}{2}}: \mathbb{Z}_{p-1} \cong\left(\mathbb{Z}_{p}: \mathbb{Z}_{\frac{p-1}{2}}\right) \times \mathrm{D}_{p+1}$, where $p \equiv 3(\bmod 4)$; $\mathbb{Z}_{\frac{p(p+1)}{2}}: \mathbb{Z}_{p-1} \cong \mathbb{Z}_{\frac{p+1}{2}} \times\left(\mathbb{Z}_{p}: \mathbb{Z}_{p-1}\right)$, where $p \equiv 1(\bmod 4) ;$
(c) $\mathbb{Z}_{n}^{2}, \mathbb{Z}_{m}^{2}: \mathbb{Z}_{4}$ with m odd;
(d) $R=\mathbb{Z}_{p}$ or \mathbb{Z}_{p}^{2}, or $\mathbb{Z}_{9}: \mathbb{Z}_{3}, \mathbb{Z}_{9}: \mathbb{Z}_{9}$, or $\mathbb{Z}_{8} \cdot \mathbb{Z}_{2}, \mathbb{Z}_{4} \cdot \mathbb{Z}_{4}, \mathbb{Z}_{8}: \mathbb{Z}_{8}$ or $\mathbb{Z}_{16}: \mathbb{Z}_{16}$.

Coset graph

- Definition. Let G be a group, H a subgroup, and H a subset of G. The coset graph $\cos (G, H, H S H)$ is defined with the vertex set $\left[G: H\right.$], and $H x$ is adjacent to $H y$ iff $y x^{-1} \in H S H$.

Coset graph

- Definition. Let G be a group, H a subgroup, and H a subset of G. The coset graph $\cos (G, H, H S H)$ is defined with the vertex set $\left[G: H\right.$], and $H x$ is adjacent to $H y$ iff $y x^{-1} \in H S H$.
- Lemma 1. (1) $\Gamma=\cos (G, H, H S H)$ is connected iff $\langle H, S\rangle=G$;
(2) Γ is G-edge-transitive iff $\Gamma=\cos \left(G, G_{\alpha}, G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha}\right)$ for some $g \in G$, and $\operatorname{val}(\Gamma)=\left|G_{\alpha}: G_{\alpha} \cap G_{\alpha}^{g}\right|$ or $2\left|G_{\alpha}: G_{\alpha} \cap G_{\alpha}^{g}\right|$.

Coset graph

- Definition. Let G be a group, H a subgroup, and H a subset of G. The coset graph $\cos (G, H, H S H)$ is defined with the vertex set $[G: H]$, and $H x$ is adjacent to $H y$ iff $y x^{-1} \in H S H$.
- Lemma 1. (1) $\Gamma=\cos (G, H, H S H)$ is connected iff $\langle H, S\rangle=G$;
(2) Γ is G-edge-transitive iff $\Gamma=\cos \left(G, G_{\alpha}, G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha}\right)$ for some $g \in G$, and $\operatorname{val}(\Gamma)=\left|G_{\alpha}: G_{\alpha} \cap G_{\alpha}^{g}\right|$ or $2\left|G_{\alpha}: G_{\alpha} \cap G_{\alpha}^{g}\right|$.
- Lemma 2. For a coset graph $\Gamma=\operatorname{Cos}\left(G, H, H\left\{g, g^{-1}\right\} H\right)$, if all subgroups of H which are isomorphic to $H \cap H^{g}$ are conjugate in H, then there exists $f \in \mathbf{N}_{G}\left(H \cap H^{g}\right)$ such that $H\left\{g, g^{-1}\right\} H=H\left\{f, f^{-1}\right\} H$.

Proof of Theorem 1: Divided into four cases

- Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let $R \leq \operatorname{Aut}(\Gamma)$ be transitive on V. By Theorem 2 , $G \leq \operatorname{Sym}(V)$ is of type diagonal, product action, almost simple or affine.

Proof of Theorem 1: Divided into four cases

- Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let $R \leq \operatorname{Aut}(\Gamma)$ be transitive on V. By Theorem 2, $G \leq \operatorname{Sym}(V)$ is of type diagonal, product action, almost simple or affine.
- We thus divide naturally our discussion into four cases.

Proof of Theorem 1: Divided into four cases

- Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let $R \leq \operatorname{Aut}(\Gamma)$ be transitive on V. By Theorem 2, $G \leq \operatorname{Sym}(V)$ is of type diagonal, product action, almost simple or affine.
- We thus divide naturally our discussion into four cases.
- Case 1. G is of diagonal type (including simple diagonal or holomorph simple).

Proof of Theorem 1: Divided into four cases

- Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let $R \leq \operatorname{Aut}(\Gamma)$ be transitive on V. By Theorem 2, $G \leq \operatorname{Sym}(V)$ is of type diagonal, product action, almost simple or affine.
- We thus divide naturally our discussion into four cases.
- Case 1. G is of diagonal type (including simple diagonal or holomorph simple).
- Case 2. G is of product action type.

Proof of Theorem 1: Divided into four cases

- Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let $R \leq \operatorname{Aut}(\Gamma)$ be transitive on V. By Theorem 2, $G \leq \operatorname{Sym}(V)$ is of type diagonal, product action, almost simple or affine.
- We thus divide naturally our discussion into four cases.
- Case 1. G is of diagonal type (including simple diagonal or holomorph simple).
- Case 2. G is of product action type.
- Case 3. G is almost simple.

Proof of Theorem 1: Divided into four cases

- Let Γ be G-vertex-quasiprimitive edge-transitive metacirculants on V, and let $R \leq \operatorname{Aut}(\Gamma)$ be transitive on V. By Theorem 2, $G \leq \operatorname{Sym}(V)$ is of type diagonal, product action, almost simple or affine.
- We thus divide naturally our discussion into four cases.
- Case 1. G is of diagonal type (including simple diagonal or holomorph simple).
- Case 2. G is of product action type.
- Case 3. G is almost simple.
- Case 4. G is affine.

Case 1. G is of diagonal type

Lemma 3. Let G be of diagonal type. Then $\operatorname{soc}(G)=T^{2}$ with $T=\operatorname{PSL}(2, p)$, and $R=\mathbb{Z}_{p \frac{p+1}{2}}: \mathbb{Z}_{p-1}$ is regular on V, and the following statements hold:
(a) $\Gamma=\operatorname{Cay}(T, S)$, where S consists of a full conjugate class of elements g, g^{-1} of T;
(b) Aut $\Gamma=(T \times T) \cdot 2^{2}$, and Γ is arc transitive;
(c) if Γ is G-locally primitive, then $g=g^{-1}$ is an involution, and Γ has valency $\frac{1}{2} p(p-1)$ or $\frac{1}{2} p(p+1)$.

Case 2. G is of product action type

Lemma 4. Let G be primitive of product action type. Then
(a) $\operatorname{soc}(G)=T^{2}$, where $T=\mathrm{A}_{n}, \operatorname{PSL}(d, q)$ with $n=\frac{q^{d}-1}{q-1}, \operatorname{PSL}(2,11)$ with $n=11, \mathrm{M}_{11}$ with $n=11$, or M_{23} with $n=23$.
(b) $\quad \Gamma \cong \mathrm{K}_{n} \square \mathrm{~K}_{n}$ or $\mathrm{K}_{n} \times \mathrm{K}_{n}$, where $n \geq 5$.
(c) If Γ is G-locally primitive, then $\Gamma=\mathrm{K}_{n} \times \mathrm{K}_{n}$, and $T \neq \operatorname{PSL}(d, q)$ with $d \geq 3$.

Case 3. G is affine

Lemma 5. Let G be affine, with socle \mathbb{Z}_{p}^{d}. Then one of the following holds:
(a) G is 2-transitive, and $\Gamma=\mathrm{K}_{p^{d}}$;
(b) $d=2 e, G=H$ 亿 S_{2}, where H is 2-transitive of degree p^{e}, and $\Gamma=\mathrm{K}_{p^{e}} \square \mathrm{~K}_{p^{e}}$ or $\mathrm{K}_{p^{e}} \times \mathrm{K}_{p^{e}}$;
(c) Γ is a normal Cayley graph of \mathbb{Z}_{p}^{d}.

Case 4. G is almost simple

We finally treat the almost simple case. Then (G, R) lies in TABLE 1 above. By determining generalized orbitals of all candidates there one by one, we finish the proof of Theorem 1 by following 6 lemmas.

Case 4. G is almost simple: (G is not 2 -dimensional linear group)

Lemma 6. Suppose that $T=\operatorname{soc}(G)$ is not a 2-dimensional linear group. Then the following statements hold:
(1) $\Gamma=\operatorname{line}\left(\mathrm{K}_{p}\right)$ or $\overline{\operatorname{line}}\left(\mathrm{K}_{p}\right)$ with p prime, and one of the following holds:
(a) $T=\mathrm{A}_{p}$ or S_{p}, and $T_{v}=\mathrm{S}_{p-2}$ or $\mathrm{S}_{p-2} \times \mathrm{S}_{2}$, respectively;
(b) $p=11, T=\mathrm{M}_{11}$, and $T_{v}=\mathrm{M}_{9} .2$;
(c) $p=23, T=\mathrm{M}_{23}$, and $T_{v}=\mathrm{M}_{21} \cdot 2$ or $2^{4}: \mathrm{A}_{7}$.
(2) $G=\operatorname{P\Gamma L}(3,4), \Gamma$ is homomorphic to K_{21}; moreover, Γ is not locally primitive.
(3) $G=\operatorname{PSL}(5,2)$, and Γ is the Grassmann graph $\mathrm{G}_{5}(2)$ or the complement, of which only the former is locally primitive. (4) $T=\operatorname{PSU}(4,2)$ or $\operatorname{PSU}(4,2) \cdot 2$, and Γ is the Schläfli graph or its complement, of which only the former is locally primitive.

Case 4. G is almost simple: $\operatorname{soc}(G)=\operatorname{PSL}(2, p)$

Lemma 7. Let $\operatorname{soc}(G)=\operatorname{PSL}(2, p), R=\mathbb{Z}_{p}: \mathbb{Z}_{\frac{p-1}{2}}$, and
$G_{v} \triangleright \mathbb{Z}_{\frac{p+1}{2}}$. Then one of the following holds:
(a) $G=\operatorname{PGL}(2, p), G_{v}=\mathbb{Z}_{p+1}, \Gamma$ is of valency $p+1$ or $2(p+1)$.
(b) $G=\mathrm{PGL}(2, p), G_{v}=\mathrm{D}_{2(p+1)}, \Gamma$ is of valency $\frac{p+1}{2}$, unique; or Γ is of valency $p+1$, one of $\frac{p-1}{2}$.
Moreover, if Γ is locally primitive, then $p \equiv 1(\bmod 4)$, and Γ is of prime valency $\frac{p+1}{2}$.

Case 4. G is almost simple: $\left(G, G_{v}\right)=\left(\operatorname{PSL}(2,11), A_{4}\right)$

Lemma 8. Let $T=\operatorname{PSL}(2,11)$, and $T_{v}=\mathrm{A}_{4}$. Then
(a) Γ is $(G, 2)$-arc transitive and of valency 4 , or
(b) G-arc transitive and of valency 6 , or 12 , or
(c) G-half-transitive of valency 12 or 24 .

Moreover, if Γ is locally primitive, then Γ is 2 -arc transitive of valency 4.

Case 4. G is almost simple: $\left(G, G_{v}\right)=\left(\operatorname{PSL}(2, p), A_{5}\right)$ with
$p=15,29,59$

Lemma 9. Let $G=\operatorname{PSL}(2, p)$, where $p=19,29$ or 59 , and
$G_{v}=\mathrm{A}_{5}$. Then one of the following holds:
(a) $G=\operatorname{PSL}(2,19)$, and either Γ is $(G, 2)$-arc transitive of valency 6 , or Γ is G-arc transitive of valency 20 or 30 .
(b) $G=\operatorname{PSL}(2,29)$, and either Γ is G-arc transitive of valency 12 or 30 , or Γ is G-half transitive of valency 40 .
(c) $G=\operatorname{PSL}(2,59)$, and Γ has valency $6,10,12,20,24,30$ or 40.

Moreover, if Γ is locally primitive, then $G=\operatorname{PSL}(2,19)$ or $\operatorname{PSL}(2,59)$, and Γ is $(G, 2)$-arc transitive of valency 6 .

Case 4. G is almost simple: $\left(G, G_{v}\right)=\left(\operatorname{PSL}(2,23), S_{4}\right)$

Lemma 10. For $G=\operatorname{PSL}(2,23)$ and $G_{v}=\mathrm{S}_{4}$, the order
$|V|=253$, then
(a) Γ is $(G, 2)$-arc transitive of valency 4 , or
(b) Γ is G-arc transitive of valency 6 or 8 , or
(c) Γ is G-half transitive of valency 12 or 16 .

If Γ is G-locally primitive, then Γ is $(G, 2)$-arc transitive of valency 4.

Case 4. G is almost simple: $\left(G, G_{v}\right)=\left(\mathrm{P} \Gamma \mathrm{L}(2,16),\left(A_{5} \times\right.\right.$
2).2)

Lemma 11. For $G=\operatorname{P\Gamma L}(2,16)$ and $G_{v}=\left(\mathrm{A}_{5} \times 2\right) .2$, then Γ is arc-transitive and of valency 12,15 or 40 , Aut $\Gamma=G$, and Γ is not locally primitive.

Thank You!

