On isomorphism problem for cyclic codes

Misha Muzychuk

Netanya Academic College, Israel

Rogla, August, 2010

Linear codes

Let $\mathbb{F}_{q}, q=p^{e}$ be a finite field

Definition

An $[n, k]_{q}$-linear code is a k-dimensional subspace C of \mathbb{F}_{q}^{n}. The numbers n and k are called the length and dimension of a code.

A generating matrix G of C is any matrix the rows of which form a basis of C. Thus G is a full rank matrix. Two full rank matrices of size $k \times n$ define the same $[n, k]_{q}$-code iff they are row equivalent.

Code equivalence

Two codes $C \leq \mathbb{F}_{q}^{n}, C^{\prime} \leq \mathbb{F}_{q}^{n}$ are called (permutation) equivalent iff one of them may be obtained from another by permuting the coordinates. In other words, there exists an n-by- n permutation matrix P such that $C P=C^{\prime}$.

The automorphism group of a code
Given a linear code $C \leq \mathbb{F}_{q}^{n}$, we define its automorphism group Aut (C) as the set of all $\pi \in S_{n}$ such that $C P_{\pi}=C$.

Code equivalence problem

Given two $[n, k]_{q}$ codes $C \leq \mathbb{F}_{q}^{n}, C^{\prime} \leq \mathbb{F}_{q}^{n}$, find whether they are equivalent.

Matrix reformulation

Given two full-rank matrices $G, G^{\prime} \in M_{k \times n}\left(\mathbb{F}_{q}\right)$. Does there exists a permutation matrix P such that $G P$ and G^{\prime} are row equivalent?
Do there exist $\pi \in S_{n}$ and $Q \in G L_{k}\left(\mathbb{F}_{q}\right)$ s.t. $Q G^{\prime}=G P_{\pi}$.

Code equivalence problem

Given two $[n, k]_{q}$ codes $C \leq \mathbb{F}_{q}^{n}, C^{\prime} \leq \mathbb{F}_{q}^{n}$, find whether they are equivalent.

Matrix reformulation
Given two full-rank matrices $G, G^{\prime} \in M_{k \times n}\left(\mathbb{F}_{q}\right)$. Does there exists a permutation matrix P such that $G P$ and G^{\prime} are row equivalent?
Do there exist $\pi \in S_{n}$ and $Q \in G L_{k}\left(\mathbb{F}_{q}\right)$ s.t. $Q G^{\prime}=G P_{\pi}$.

Open Problem

Does the exist an algorithm solving the code equivalence problem in time polynomial in q^{k} ?

Automorphism group of a code

Given a linear $[n, k]_{q}$ code $C \leq \mathbb{F}_{q}^{n}$, find generators of its automorphism group $\operatorname{Aut}(C)$.

Matrix reformulation

Let $C \leq \mathbb{F}_{q}^{n}$ be an $[n, k]_{q}$ code and G its generating matrix. Then a permutation $\pi \in S_{n}$ is an automorphism of C iff there exists $Q(\pi) \in G L_{k}\left(\mathbb{F}_{q}\right)$ such that $G P_{\pi}=Q(\pi) G$.

Proposition

A mapping $\pi \mapsto Q(\pi)$ is a group homomorphism. It is monomorphism iff G has no repeated columns.

Cyclic and group codes

Cyclic codes

An $[n, k]_{q}$ codes $C \leq \mathbb{F}_{q}^{n}$ is called cyclic if it is invariant under cyclic shift $\left(c_{0}, \ldots, c_{n-1}\right) \mapsto\left(c_{1}, \ldots, c_{n-1}, c_{0}\right)$.

The vector space \mathbb{F}_{q}^{n} may be identified with the group algebra $\mathbb{F}_{q}[H]$ of a cyclic group H generated by $h \in H$. In this case a cyclic code is an ideal of $\mathbb{F}_{q}[H]$. Since $\mathbb{F}_{q}[H] \cong \mathbb{F}_{q}[x] /\left(x^{n}-1\right)$ is a principal ideal algebra, every cyclic code has a form $g(h) \mathbb{F}_{q}[H]$ where $g(x)$ is a divisor of $x^{n}-1$.

Group codes

Given a finite group H, any right ideal of the group algebra $\mathbb{F}_{q}[H]$ is called a group code over H. A group code is called semisimple if $\operatorname{gcd}(q,|H|)=1$.

Cayley combinatorial objects

Definition

For each group H we denote by $h_{R} \in \operatorname{Sym}(H)$ the right translation by h, that is $x^{h_{R}}=x h$.

Definition

A Cayley combinatorial object is a relational structure on H invariant under the group H_{R} where $H_{R}:=\left\{h_{R} \mid h \in H\right\}$.

Cayley combinatorial objects

Definition

For each group H we denote by $h_{R} \in \operatorname{Sym}(H)$ the right translation by h, that is $x^{h_{R}}=x h$.

Definition

A Cayley combinatorial object is a relational structure on H invariant under the group H_{R} where $H_{R}:=\left\{h_{R} \mid h \in H\right\}$.

Examples

Cayley combinatorial objects

Definition

For each group H we denote by $h_{R} \in \operatorname{Sym}(H)$ the right translation by h, that is $x^{h_{R}}=x h$.

Definition

A Cayley combinatorial object is a relational structure on H invariant under the group H_{R} where $H_{R}:=\left\{h_{R} \mid h \in H\right\}$.

Examples

1 Cayley graphs/digraphs/colored graphs;

Cayley combinatorial objects

Definition

For each group H we denote by $h_{R} \in \operatorname{Sym}(H)$ the right translation by h, that is $x^{h_{R}}=x h$.

Definition

A Cayley combinatorial object is a relational structure on H invariant under the group H_{R} where $H_{R}:=\left\{h_{R} \mid h \in H\right\}$.

Examples

1 Cayley graphs/digraphs/colored graphs;
2 Cayley maps;

Cayley combinatorial objects

Definition

For each group H we denote by $h_{R} \in \operatorname{Sym}(H)$ the right translation by h, that is $x^{h_{R}}=x h$.

Definition

A Cayley combinatorial object is a relational structure on H invariant under the group H_{R} where $H_{R}:=\left\{h_{R} \mid h \in H\right\}$.

Examples

1 Cayley graphs/digraphs/colored graphs;
2 Cayley maps;
3 Cayley designs = difference families;

Cayley combinatorial objects

Definition

For each group H we denote by $h_{R} \in \operatorname{Sym}(H)$ the right translation by h, that is $x^{h_{R}}=x h$.

Definition

A Cayley combinatorial object is a relational structure on H invariant under the group H_{R} where $H_{R}:=\left\{h_{R} \mid h \in H\right\}$.

Examples

1 Cayley graphs/digraphs/colored graphs;
2 Cayley maps;
3 Cayley designs = difference families;
4 group codes;

Isomorphism problem for Cayley combinatorial objects

Problem

Given two Cayley combinatorial objects $C, C^{\prime} \in \mathcal{C}$ over H. Find whether they are isomorphic.

Cayley equivalence

Two Cayley objects C and C^{\prime} are Cayley equivalent/isomorphic, notation $C \cong$ Cay C^{\prime}, if there exists $\pi \in \operatorname{Aut}(H)$ such that $C^{\pi}=C^{\prime}$.

CI-groups

A group H is called a Cl-group w.r.t. to a class \mathcal{C} of Cayley objects over H if for any pair of $C, C^{\prime} \in \mathcal{C}$ it holds that

$$
C \cong C^{\prime} \Longleftrightarrow C \cong{ }_{\text {Cay }} C^{\prime}
$$

Solving sets

Let \mathcal{C} be a class of of Cayley objects over a group H

Definition

A set of permutations $S \subseteq \operatorname{Sym}(H)$ is called a solving sets for \mathcal{C} iff for any pair $C, C^{\prime} \in \mathcal{C}$ it holds that

$$
C \cong C^{\prime} \Longleftrightarrow \exists_{\sigma \in S} C^{\sigma}=C^{\prime}
$$

Being a Cl-group w.r.t. \mathcal{C} is equivalent to saying that $\operatorname{Aut}(H)$ is a solving set for \mathcal{C}.

Main Results

Theorem (CFSG-dependent)

Any solving set for colored circulant digraphs of order n is a solving set for semisimple cyclic codes of length n.

Corollary A
A cyclic group of square-free or twice square-free order n is a Cl -group w.r.t. semisimple cyclic codes of length n.

Corollary B

There exists a solving set for semisimple cyclic codes of order n of size $O\left(n^{3}\right)$.

Group codes over p-groups.

Theorem

Any solving set for colored Cayley digraphs over a p-group H is also a solving set for semisimple group codes over H.

Corollary

An elementary abelian group H of order $p^{e}, e \leq 4$ is a Cl-group with respect to semisimple group codes over H.

Main observation

Proposition

Let $C \leq \mathbb{F}_{q}^{n}$ be a linear code and $E \in M_{n}\left(F_{q}\right)$ be a projector onto C. Then each permutation matrix commuting with E is an automorphism of C. In particular, $C_{S_{n}}(E) \leq \operatorname{Aut}(C)$.

Proposition

For any matrix $E \in M_{n}\left(\mathbb{F}_{q}\right)$ the group $C_{S_{n}}(E)$ is 2-closed.

2-closed permutation groups

Recall that the orbits of the diagonal action of $G \leq S_{n}$ on the set of pairs $(i, j), 1 \leq i, j \leq n$ are called 2-orbits of G.

Definition

A 2-closure $G^{(2)}$ of G is the unique maximal subgroup of S_{n} that has the same 2-orbits as G.

Properties of 2-closure
$1 H \leq G \Longrightarrow H^{(2)} \leq G^{(2)}$;
$2 G \leq G^{(2)}$;
$3\left(G^{(2)}\right)^{(2)}=G^{(2)}$

2-closed subgroups of the code automorphism group

Lemma

Let H be a subgroup of $\operatorname{Aut}(C), C \leq \mathbb{F}_{q}^{n}$. If $\operatorname{gcd}(q,|H|)=1$, then $H^{(2)} \leq \operatorname{Aut}(C)$. In particular, any Sylow r-subgroup of $\operatorname{Aut}(C)$ with $\operatorname{gcd}(r, q)=1$ is 2 -closed.

Proof.

Since $H \leq S_{n}$, the vector space \mathbb{F}_{q}^{n} is an $\mathbb{F}_{q}[H]$-module. The code C is an $\mathbb{F}_{q}[H]$-submodule. The algebra $\mathbb{F}_{q}[H]$ is semisimple. By Maschke'e Theorem there exists a $\mathbb{F}_{q}[H]$-submodule of \mathbb{F}_{q}^{n} complementary to C. Let E be a projector onto C with kernel D. Then E commutes with each permutation matrix $P_{\pi}, \pi \in H$. Thus $H \leq C_{S_{n}}(E) \leq \operatorname{Aut}(C)$ implying $H \leq H^{(2)} \leq C_{S_{n}}(E) \leq \operatorname{Aut}(C)$.

