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Linear codes

Let Fq,q = pe be a finite field

Definition

An [n, k ]q-linear code is a k -dimensional subspace C of Fn
q. The

numbers n and k are called the length and dimension of a code.

A generating matrix G of C is any matrix the rows of which form
a basis of C. Thus G is a full rank matrix.
Two full rank matrices of size k × n define the same
[n, k ]q-code iff they are row equivalent.



Code equivalence

Two codes C ≤ Fn
q,C′ ≤ Fn

q are called (permutation) equivalent
iff one of them may be obtained from another by permuting the
coordinates. In other words, there exists an n-by-n permutation
matrix P such that CP = C′.

The automorphism group of a code

Given a linear code C ≤ Fn
q, we define its automorphism group

Aut(C) as the set of all π ∈ Sn such that CPπ = C.



Code equivalence problem

Given two [n, k ]q codes C ≤ Fn
q,C′ ≤ Fn

q, find whether they are
equivalent.

Matrix reformulation

Given two full-rank matrices G,G′ ∈ Mk×n(Fq). Does there
exists a permutation matrix P such that GP and G′ are row
equivalent?
Do there exist π ∈ Sn and Q ∈ GLk (Fq) s.t. QG′ = GPπ.

Open Problem

Does the exist an algorithm solving the code equivalence
problem in time polynomial in qk?
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Automorphism group of a code

Given a linear [n, k ]q code C ≤ Fn
q, find generators of its

automorphism group Aut(C).

Matrix reformulation

Let C ≤ Fn
q be an [n, k ]q code and G its generating matrix.

Then a permutation π ∈ Sn is an automorphism of C iff there
exists Q(π) ∈ GLk (Fq) such that GPπ = Q(π)G.

Proposition

A mapping π 7→ Q(π) is a group homomorphism. It is
monomorphism iff G has no repeated columns.



Cyclic and group codes

Cyclic codes

An [n, k ]q codes C ≤ Fn
q is called cyclic if it is invariant under

cyclic shift (c0, ..., cn−1) 7→ (c1, ..., cn−1, c0).

The vector space Fn
q may be identified with the group algebra

Fq[H] of a cyclic group H generated by h ∈ H. In this case a
cyclic code is an ideal of Fq[H]. Since Fq[H] ∼= Fq[x ]/(xn − 1) is
a principal ideal algebra, every cyclic code has a form
g(h)Fq[H] where g(x) is a divisor of xn − 1.

Group codes

Given a finite group H, any right ideal of the group algebra
Fq[H] is called a group code over H. A group code is called
semisimple if gcd(q, |H|) = 1.



Cayley combinatorial objects

Definition

For each group H we denote by hR ∈ Sym(H) the right
translation by h, that is xhR = xh.

Definition

A Cayley combinatorial object is a relational structure on H
invariant under the group HR where HR := {hR |h ∈ H}.

Examples

1 Cayley graphs/digraphs/colored graphs;
2 Cayley maps;
3 Cayley designs = difference families;
4 group codes;
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Isomorphism problem for Cayley combinatorial objects

Problem

Given two Cayley combinatorial objects C,C′ ∈ C over H. Find
whether they are isomorphic.

Cayley equivalence

Two Cayley objects C and C′ are Cayley equivalent/isomorphic,
notation C ∼=Cay C′, if there exists π ∈ Aut(H) such that
Cπ = C′.

CI-groups

A group H is called a CI-group w.r.t. to a class C of Cayley
objects over H if for any pair of C,C′ ∈ C it holds that

C ∼= C′ ⇐⇒ C ∼=Cay C′



Solving sets

Let C be a class of of Cayley objects over a group H

Definition

A set of permutations S ⊆ Sym(H) is called a solving sets for C
iff for any pair C,C′ ∈ C it holds that

C ∼= C′ ⇐⇒ ∃σ∈SCσ = C′.

Being a CI-group w.r.t. C is equivalent to saying that Aut(H) is a
solving set for C.



Main Results

Theorem (CFSG-dependent)

Any solving set for colored circulant digraphs of order n is a
solving set for semisimple cyclic codes of length n.

Corollary A

A cyclic group of square-free or twice square-free order n is a
CI-group w.r.t. semisimple cyclic codes of length n.

Corollary B

There exists a solving set for semisimple cyclic codes of order n
of size O(n3).



Group codes over p-groups.

Theorem

Any solving set for colored Cayley digraphs over a p-group H is
also a solving set for semisimple group codes over H.

Corollary

An elementary abelian group H of order pe,e ≤ 4 is a CI-group
with respect to semisimple group codes over H.



Main observation

Proposition

Let C ≤ Fn
q be a linear code and E ∈ Mn(Fq) be a projector

onto C. Then each permutation matrix commuting with E is an
automorphism of C. In particular, CSn(E) ≤ Aut(C).

Proposition

For any matrix E ∈ Mn(Fq) the group CSn(E) is 2-closed.



2-closed permutation groups

Recall that the orbits of the diagonal action of G ≤ Sn on the
set of pairs (i , j),1 ≤ i , j ≤ n are called 2-orbits of G.

Definition

A 2-closure G(2) of G is the unique maximal subgroup of Sn
that has the same 2-orbits as G.

Properties of 2-closure

1 H ≤ G =⇒ H(2) ≤ G(2);
2 G ≤ G(2);
3 (G(2))(2) = G(2)



2-closed subgroups of the code automorphism group

Lemma

Let H be a subgroup of Aut(C),C ≤ Fn
q. If gcd(q, |H|) = 1, then

H(2) ≤ Aut(C). In particular, any Sylow r -subgroup of Aut(C)
with gcd(r ,q) = 1 is 2-closed.

Proof.

Since H ≤ Sn, the vector space Fn
q is an Fq[H]-module. The

code C is an Fq[H]-submodule. The algebra Fq[H] is
semisimple. By Maschke’e Theorem there exists a
Fq[H]-submodule of Fn

q complementary to C. Let E be a
projector onto C with kernel D. Then E commutes with each
permutation matrix Pπ, π ∈ H. Thus H ≤ CSn(E) ≤ Aut(C)
implying H ≤ H(2) ≤ CSn(E) ≤ Aut(C).


