On isomorphism problem for cyclic codes

Misha Muzychuk

Netanya Academic College, Israel

Rogla, August, 2010

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let \mathbb{F}_q , $q = p^e$ be a finite field

Definition

An $[n, k]_q$ -linear code is a k-dimensional subspace C of \mathbb{F}_q^n . The numbers *n* and *k* are called the length and dimension of a code.

A generating matrix *G* of *C* is any matrix the rows of which form a basis of *C*. Thus *G* is a full rank matrix. Two full rank matrices of size $k \times n$ define the same $[n, k]_a$ -code iff they are row equivalent.

Two codes $C \leq \mathbb{F}_q^n$, $C' \leq \mathbb{F}_q^n$ are called (permutation) equivalent iff one of them may be obtained from another by permuting the coordinates. In other words, there exists an *n*-by-*n* permutation matrix *P* such that CP = C'.

The automorphism group of a code

Given a linear code $C \leq \mathbb{F}_q^n$, we define its automorphism group Aut(*C*) as the set of all $\pi \in S_n$ such that $CP_{\pi} = C$.

Code equivalence problem

Given two $[n, k]_q$ codes $C \leq \mathbb{F}_q^n$, $C' \leq \mathbb{F}_q^n$, find whether they are equivalent.

Matrix reformulation

Given two full-rank matrices $G, G' \in M_{k \times n}(\mathbb{F}_q)$. Does there exists a permutation matrix P such that GP and G' are row equivalent? Do there exist $\pi \in S_n$ and $Q \in GL_k(\mathbb{F}_q)$ s.t. $QG' = GP_{\pi}$.

(日) (日) (日) (日) (日) (日) (日)

Code equivalence problem

Given two $[n, k]_q$ codes $C \leq \mathbb{F}_q^n$, $C' \leq \mathbb{F}_q^n$, find whether they are equivalent.

Matrix reformulation

Given two full-rank matrices $G, G' \in M_{k \times n}(\mathbb{F}_q)$. Does there exists a permutation matrix P such that GP and G' are row equivalent? Do there exist $\pi \in S_n$ and $Q \in GL_k(\mathbb{F}_q)$ s.t. $QG' = GP_{\pi}$.

Open Problem

Does the exist an algorithm solving the code equivalence problem in time polynomial in q^k ?

Automorphism group of a code

Given a linear $[n, k]_q$ code $C \leq \mathbb{F}_q^n$, find generators of its automorphism group Aut(C).

Matrix reformulation

Let $C \leq \mathbb{F}_q^n$ be an $[n, k]_q$ code and G its generating matrix. Then a permutation $\pi \in S_n$ is an automorphism of C iff there exists $Q(\pi) \in GL_k(\mathbb{F}_q)$ such that $GP_{\pi} = Q(\pi)G$.

Proposition

A mapping $\pi \mapsto Q(\pi)$ is a group homomorphism. It is monomorphism iff *G* has no repeated columns.

Cyclic and group codes

Cyclic codes

An $[n, k]_q$ codes $C \leq \mathbb{F}_q^n$ is called cyclic if it is invariant under cyclic shift $(c_0, ..., c_{n-1}) \mapsto (c_1, ..., c_{n-1}, c_0)$.

The vector space \mathbb{F}_q^n may be identified with the group algebra $\mathbb{F}_q[H]$ of a cyclic group H generated by $h \in H$. In this case a cyclic code is an ideal of $\mathbb{F}_q[H]$. Since $\mathbb{F}_q[H] \cong \mathbb{F}_q[x]/(x^n - 1)$ is a principal ideal algebra, every cyclic code has a form $g(h)\mathbb{F}_q[H]$ where g(x) is a divisor of $x^n - 1$.

Group codes

Given a finite group *H*, any right ideal of the group algebra $\mathbb{F}_q[H]$ is called a group code over *H*. A group code is called semisimple if gcd(q, |H|) = 1.

Definition

For each group *H* we denote by $h_R \in \text{Sym}(H)$ the right translation by *h*, that is $x^{h_R} = xh$.

Definition

A Cayley combinatorial object is a relational structure on *H* invariant under the group H_R where $H_R := \{h_R | h \in H\}$.

・ロト・日本・日本・日本・日本

Definition

For each group *H* we denote by $h_R \in \text{Sym}(H)$ the right translation by *h*, that is $x^{h_R} = xh$.

Definition

A Cayley combinatorial object is a relational structure on *H* invariant under the group H_R where $H_R := \{h_R | h \in H\}$.

Definition

For each group *H* we denote by $h_R \in \text{Sym}(H)$ the right translation by *h*, that is $x^{h_R} = xh$.

Definition

A Cayley combinatorial object is a relational structure on *H* invariant under the group H_R where $H_R := \{h_R | h \in H\}$.

Definition

For each group *H* we denote by $h_R \in \text{Sym}(H)$ the right translation by *h*, that is $x^{h_R} = xh$.

Definition

A Cayley combinatorial object is a relational structure on *H* invariant under the group H_R where $H_R := \{h_R | h \in H\}$.

- 1 Cayley graphs/digraphs/colored graphs;
- 2 Cayley maps;

Definition

For each group *H* we denote by $h_R \in \text{Sym}(H)$ the right translation by *h*, that is $x^{h_R} = xh$.

Definition

A Cayley combinatorial object is a relational structure on *H* invariant under the group H_R where $H_R := \{h_R | h \in H\}$.

- 1 Cayley graphs/digraphs/colored graphs;
- 2 Cayley maps;
- 3 Cayley designs = difference families;

Definition

For each group *H* we denote by $h_R \in \text{Sym}(H)$ the right translation by *h*, that is $x^{h_R} = xh$.

Definition

A Cayley combinatorial object is a relational structure on *H* invariant under the group H_R where $H_R := \{h_R | h \in H\}$.

- 1 Cayley graphs/digraphs/colored graphs;
- 2 Cayley maps;
- 3 Cayley designs = difference families;
- 4 group codes;

Isomorphism problem for Cayley combinatorial objects

Problem

Given two Cayley combinatorial objects $C, C' \in C$ over H. Find whether they are isomorphic.

Cayley equivalence

Two Cayley objects *C* and *C'* are Cayley equivalent/isomorphic, notation $C \cong_{Cay} C'$, if there exists $\pi \in Aut(H)$ such that $C^{\pi} = C'$.

CI-groups

A group *H* is called a Cl-group w.r.t. to a class C of Cayley objects over *H* if for any pair of $C, C' \in C$ it holds that

$$\mathcal{C}\cong\mathcal{C}'\iff\mathcal{C}\cong_{\mathcal{C}ay}\mathcal{C}'$$

Let C be a class of of Cayley objects over a group H

Definition

A set of permutations $S \subseteq \text{Sym}(H)$ is called a solving sets for C iff for any pair $C, C' \in C$ it holds that

$$C \cong C' \iff \exists_{\sigma \in S} C^{\sigma} = C'.$$

Being a CI-group w.r.t. C is equivalent to saying that Aut(H) is a solving set for C.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main Results

Theorem (CFSG-dependent)

Any solving set for colored circulant digraphs of order n is a solving set for semisimple cyclic codes of length n.

Corollary A

A cyclic group of square-free or twice square-free order n is a CI-group w.r.t. semisimple cyclic codes of length n.

Corollary B

There exists a solving set for semisimple cyclic codes of order *n* of size $O(n^3)$.

Theorem

Any solving set for colored Cayley digraphs over a p-group H is also a solving set for semisimple group codes over H.

Corollary

An elementary abelian group *H* of order p^e , $e \le 4$ is a CI-group with respect to semisimple group codes over *H*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Proposition

Let $C \leq \mathbb{F}_q^n$ be a linear code and $E \in M_n(F_q)$ be a projector onto *C*. Then each permutation matrix commuting with *E* is an automorphism of *C*. In particular, $C_{S_n}(E) \leq \operatorname{Aut}(C)$.

・ロト・日本・山田・山田・山口・

Proposition

For any matrix $E \in M_n(\mathbb{F}_q)$ the group $C_{S_n}(E)$ is 2-closed.

Recall that the orbits of the diagonal action of $G \le S_n$ on the set of pairs $(i, j), 1 \le i, j \le n$ are called 2-orbits of *G*.

Definition

A 2-closure $G^{(2)}$ of *G* is the unique maximal subgroup of S_n that has the same 2-orbits as *G*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Properties of 2-closure

1
$$H \le G \implies H^{(2)} \le G^{(2)};$$

2 $G \le G^{(2)};$
3 $(G^{(2)})^{(2)} = G^{(2)}$

Lemma

Let *H* be a subgroup of Aut(*C*), $C \leq \mathbb{F}_q^n$. If gcd(q, |H|) = 1, then $H^{(2)} \leq Aut(C)$. In particular, any Sylow *r*-subgroup of Aut(*C*) with gcd(r, q) = 1 is 2-closed.

Proof.

Since $H \leq S_n$, the vector space \mathbb{F}_q^n is an $\mathbb{F}_q[H]$ -module. The code *C* is an $\mathbb{F}_q[H]$ -submodule. The algebra $\mathbb{F}_q[H]$ is semisimple. By Maschke'e Theorem there exists a $\mathbb{F}_q[H]$ -submodule of \mathbb{F}_q^n complementary to *C*. Let *E* be a projector onto *C* with kernel *D*. Then *E* commutes with each permutation matrix $P_{\pi}, \pi \in H$. Thus $H \leq C_{S_n}(E) \leq \operatorname{Aut}(C)$ implying $H \leq H^{(2)} \leq C_{S_n}(E) \leq \operatorname{Aut}(C)$.