The normal quotient method for analysing the structure of highly symmetric graphs

Joy Morris

University of Lethbridge

SyGN, Rogla, Slovenia, August 2, 2010

• Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).

・ 一 ・ ・ ・ ・ ・ ・

э

- Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).
- Strategy:

▲ □ ▶ ▲ □ ▶ ▲

- Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).
- Strategy:
 - Start with an arbitrary graph in the family

/⊒ > < ∃ >

- Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).
- Strategy:
 - Start with an arbitrary graph in the family
 - Reduce it to a smaller graph still in the family

.≣ →

- Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).
- Strategy:
 - Start with an arbitrary graph in the family
 - Reduce it to a smaller graph still in the family
 - Keep reducing until an "irreducible" graph is reached

- Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).
- Strategy:
 - Start with an arbitrary graph in the family
 - Reduce it to a smaller graph still in the family
 - Keep reducing until an "irreducible" graph is reached
 - Analyse all irreducible graphs

- Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).
- Strategy:
 - Start with an arbitrary graph in the family
 - Reduce it to a smaller graph still in the family
 - Keep reducing until an "irreducible" graph is reached
 - Analyse all irreducible graphs
 - Gain insight into the structure of all graphs in the family.

- Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).
- Strategy:
 - Start with an arbitrary graph in the family
 - Reduce it to a smaller graph still in the family
 - Keep reducing until an "irreducible" graph is reached
 - Analyse all irreducible graphs
 - Gain insight into the structure of all graphs in the family.
- This strategy was developed and has been used to analyse the structure of 4 families of highly symmetric graphs:

- Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).
- Strategy:
 - Start with an arbitrary graph in the family
 - Reduce it to a smaller graph still in the family
 - Keep reducing until an "irreducible" graph is reached
 - Analyse all irreducible graphs
 - Gain insight into the structure of all graphs in the family.
- This strategy was developed and has been used to analyse the structure of 4 families of highly symmetric graphs:
 - distance transitive graphs;

- Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).
- Strategy:
 - Start with an arbitrary graph in the family
 - Reduce it to a smaller graph still in the family
 - Keep reducing until an "irreducible" graph is reached
 - Analyse all irreducible graphs
 - Gain insight into the structure of all graphs in the family.
- This strategy was developed and has been used to analyse the structure of 4 families of highly symmetric graphs:
 - distance transitive graphs;
 - s-arc-transitive graphs;

- Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).
- Strategy:
 - Start with an arbitrary graph in the family
 - Reduce it to a smaller graph still in the family
 - Keep reducing until an "irreducible" graph is reached
 - Analyse all irreducible graphs
 - Gain insight into the structure of all graphs in the family.
- This strategy was developed and has been used to analyse the structure of 4 families of highly symmetric graphs:
 - distance transitive graphs;
 - s-arc-transitive graphs;
 - locally *s*-arc-transitive graphs;

- Trying to analyse structure of highly symmetric families of graphs (vertex-transitive, edge-transitive).
- Strategy:
 - Start with an arbitrary graph in the family
 - Reduce it to a smaller graph still in the family
 - Keep reducing until an "irreducible" graph is reached
 - Analyse all irreducible graphs
 - Gain insight into the structure of all graphs in the family.
- This strategy was developed and has been used to analyse the structure of 4 families of highly symmetric graphs:
 - distance transitive graphs;
 - s-arc-transitive graphs;
 - locally *s*-arc-transitive graphs;
 - strongly regular graphs that are vertex- and edge-transitive.

Definition

For any partition \mathcal{P} of the vertices a graph Γ , the **quotient graph** Γ/\mathcal{P} is the graph with vertex set $\{P : P \in \mathcal{P}\}$ and vertices $P_1 \neq P_2$ adjacent iff there exist $v_1 \in P_1$ and $v_2 \in P_2$ with v_1 and v_2 adjacent in Γ .

Definition

Definition

Definition

Definition

While taking a quotient graph reduces the order of the graph, arbitrary quotients may not preserve the properties of vertex- and edge-transitivity, or other properties of our family.

While taking a quotient graph reduces the order of the graph, arbitrary quotients may not preserve the properties of vertex- and edge-transitivity, or other properties of our family.

While taking a quotient graph reduces the order of the graph, arbitrary quotients may not preserve the properties of vertex- and edge-transitivity, or other properties of our family.

While taking a quotient graph reduces the order of the graph, arbitrary quotients may not preserve the properties of vertex- and edge-transitivity, or other properties of our family.

Blocks and quotients

Definition

Let $G \leq \operatorname{Aut}(\Gamma)$ be transitive on the vertices of Γ .

・ 同 ト ・ 三 ト ・

Blocks and quotients

Definition

Let $G \leq \operatorname{Aut}(\Gamma)$ be transitive on the vertices of Γ . The set B of vertices of Γ is a G-block if for every $g \in G$, either $g(B) \cap B = \emptyset$, or g(B) = B.

/⊒ ▶ < ∃ ▶ <

Blocks and quotients

Definition

Let $G \leq \operatorname{Aut}(\Gamma)$ be transitive on the vertices of Γ . The set B of vertices of Γ is a G-block if for every $g \in G$, either $g(B) \cap B = \emptyset$, or g(B) = B.

If B is a G-block, the collection $\{g(B) : g \in G\}$ partitions the vertices of Γ , and each set in the partition is a G-block.

Properties of block quotient graphs

Properties

• a block quotient graph of a vertex-transitive graph is vertex-transitive;

/⊒ > < ∃ >

Properties of block quotient graphs

Properties

- a block quotient graph of a vertex-transitive graph is vertex-transitive;
- a block quotient graph of an edge-transitive graph is edge-transitive;

Properties of block quotient graphs

Properties

- a block quotient graph of a vertex-transitive graph is vertex-transitive;
- a block quotient graph of an edge-transitive graph is edge-transitive;
- if the blocks are maximal w.r.t. the group G, then G will act primitively on the vertices of the block quotient graph;

Properties of block quotient graphs

Properties

- a block quotient graph of a vertex-transitive graph is vertex-transitive;
- a block quotient graph of an edge-transitive graph is edge-transitive;
- if the blocks are maximal w.r.t. the group G, then G will act primitively on the vertices of the block quotient graph;
- if we're lucky, a block quotient graph of a vertex- and edge-transitive graph in some family \mathcal{F} , will itself be in \mathcal{F} .

/⊒ ▶ < ∃ ▶ <

Problems with block quotient graphs

But...

- 4 同 6 4 日 6 4 日 6

э

Problems with block quotient graphs

But... Γ may not be a cover of its quotient,

I ≡ →

A D

3.5

But... Γ may not be a cover of its quotient, for example $G = \mathbb{Z}_4 \times \mathbb{Z}_4$ acting on $K_4 \Box K_4$ is vertex-transitive with the following block partition:

< ∃ → <

A 10

But... Γ may not be a cover of its quotient, for example $G = \mathbb{Z}_4 \times \mathbb{Z}_4$ acting on $K_4 \Box K_4$ is vertex-transitive with the following block partition:

But... Γ may not be a cover of its quotient, for example $G = \mathbb{Z}_4 \times \mathbb{Z}_4$ acting on $K_4 \Box K_4$ is vertex-transitive with the following block partition:

/⊒ > < ∃ >

But... Γ may not be a cover of its quotient, for example $G = \mathbb{Z}_4 \times \mathbb{Z}_4$ acting on $K_4 \Box K_4$ is vertex-transitive with the following block partition:

This makes it hard to prove that the quotient remains in the family.

< 67 ▶

Normal quotients

Suppose $Aut(\Gamma)$ is vertex-transitive, and has a subgroup G that is • vertex-transitive;
Suppose $Aut(\Gamma)$ is vertex-transitive, and has a subgroup G that is

- vertex-transitive; and
- edge-transitive if $Aut(\Gamma)$ is;

∃ >

A D

Suppose $Aut(\Gamma)$ is vertex-transitive, and has a subgroup G that is

- vertex-transitive; and
- edge-transitive if $Aut(\Gamma)$ is;
- and G has a subgroup N that is
 - normal;

Suppose $Aut(\Gamma)$ is vertex-transitive, and has a subgroup G that is

- vertex-transitive; and
- edge-transitive if $Aut(\Gamma)$ is;
- and G has a subgroup N that is
 - onormal; and
 - intransitive on the vertices of Γ .

Suppose $Aut(\Gamma)$ is vertex-transitive, and has a subgroup G that is

- vertex-transitive; and
- edge-transitive if Aut(Γ) is;
- and G has a subgroup N that is
 - on normal; and
 - intransitive on the vertices of Γ .

Then taking the orbits of N as the partition of the vertices of Γ produces a **normal quotient** graph, which has some nice properties.

Properties of Normal quotients

Properties

 a normal quotient graph of a vertex-transitive graph is vertex-transitive;

- **→** → **→**

Properties of Normal quotients

Properties

- a normal quotient graph of a vertex-transitive graph is vertex-transitive;
- a normal quotient graph of an edge-transitive graph is edge-transitive;

Properties of Normal quotients

Properties

- a normal quotient graph of a vertex-transitive graph is vertex-transitive;
- a normal quotient graph of an edge-transitive graph is edge-transitive;
- a normal quotient graph of a vertex- and edge-transitive graph is covered by the original graph; and

Properties of Normal quotients

Properties

- a normal quotient graph of a vertex-transitive graph is vertex-transitive;
- a normal quotient graph of an edge-transitive graph is edge-transitive;
- a normal quotient graph of a vertex- and edge-transitive graph is covered by the original graph; and
- if we're lucky, a normal quotient graph of a vertex- and edge-transitive graph in some family \mathcal{F} , will itself be in \mathcal{F} .

Definition

Let $\Gamma_i = \{(u, v) : d(u, v) = i\}$ be the set of all pairs of vertices that are at some fixed distance *i*.

▲□ ► < □ ► </p>

Definition

Let $\Gamma_i = \{(u, v) : d(u, v) = i\}$ be the set of all pairs of vertices that are at some fixed distance *i*. A **distance transitive graph** is a graph whose automorphism group is transitive on each set Γ_i , where $i \ge 0$.

Image: A image: A

Definition

Let $\Gamma_i = \{(u, v) : d(u, v) = i\}$ be the set of all pairs of vertices that are at some fixed distance *i*. A **distance transitive graph** is a graph whose automorphism group is transitive on each set Γ_i , where $i \ge 0$.

< □ > < □ >

Definition

Let $\Gamma_i = \{(u, v) : d(u, v) = i\}$ be the set of all pairs of vertices that are at some fixed distance *i*. A **distance transitive graph** is a graph whose automorphism group is transitive on each set Γ_i , where $i \ge 0$.

A (1) < (1) < (1) </p>

Definition

Let $\Gamma_i = \{(u, v) : d(u, v) = i\}$ be the set of all pairs of vertices that are at some fixed distance *i*. A **distance transitive graph** is a graph whose automorphism group is transitive on each set Γ_i , where $i \ge 0$.

<ロト < 同ト < 三ト

Definition

Let $\Gamma_i = \{(u, v) : d(u, v) = i\}$ be the set of all pairs of vertices that are at some fixed distance *i*. A **distance transitive graph** is a graph whose automorphism group is transitive on each set Γ_i , where $i \ge 0$.

< □ > < 同 > < 回 >

It turns out that

a distance transitive graph will be irreducible (under the block quotient method)

< 67 ▶

It turns out that

a distance transitive graph will be irreducible (under the block quotient method) if and only if no group of its automorphisms that acts distance-transitively, admits nontrivial blocks.

A D

It turns out that

a distance transitive graph will be irreducible (under the block quotient method) if and only if no group of its automorphisms that acts distance-transitively, admits nontrivial blocks.

Definition

A permutation group is **primitive** if it admits no nontrivial blocks.

It turns out that

a distance transitive graph will be irreducible (under the block quotient method) if and only if no group of its automorphisms that acts distance-transitively, admits nontrivial blocks.

Definition

A permutation group is primitive if it admits no nontrivial blocks.

So...

a distance transitive graph will be irreducible (under the block quotient method)

< A²
▶

It turns out that

a distance transitive graph will be irreducible (under the block quotient method) if and only if no group of its automorphisms that acts distance-transitively, admits nontrivial blocks.

Definition

A permutation group is **primitive** if it admits no nontrivial blocks.

So...

a distance transitive graph will be irreducible (under the block quotient method) if and only if every group of its automorphisms that acts distance-transitively, is primitive.

< □ > < 同 > < 三

Primitive groups and irreducible graphs

Theorem (O'Nan, Scott, 1979)

All finite primitive permutation groups are classified, into 8 disjoint classes.

<ロト < 同ト < 三ト

Primitive groups and irreducible graphs

Theorem (O'Nan, Scott, 1979)

All finite primitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, Saxl, Yokoyama, 1987)

If Γ is an irreducible distance transitive graph, and $G \leq Aut(\Gamma)$ acts distance-transitively, then:

Primitive groups and irreducible graphs

Theorem (O'Nan, Scott, 1979)

All finite primitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, Saxl, Yokoyama, 1987)

If Γ is an irreducible distance transitive graph, and $G \leq Aut(\Gamma)$ acts distance-transitively, then:

 G is of wreath type, and Γ is a graph of Hamming type (well understood);

▲□ ► ▲ □ ►

Primitive groups and irreducible graphs

Theorem (O'Nan, Scott, 1979)

All finite primitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, Saxl, Yokoyama, 1987)

If Γ is an irreducible distance transitive graph, and $G \leq Aut(\Gamma)$ acts distance-transitively, then:

- G is of wreath type, and Γ is a graph of Hamming type (well understood); or
- G is of affine type;

Image: A image: A

Primitive groups and irreducible graphs

Theorem (O'Nan, Scott, 1979)

All finite primitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, Saxl, Yokoyama, 1987)

If Γ is an irreducible distance transitive graph, and $G \leq Aut(\Gamma)$ acts distance-transitively, then:

- G is of wreath type, and Γ is a graph of Hamming type (well understood); or
- G is of affine type; or
- G is of almost simple type.

< ロ > < 同 > < 三 > <

Primitive groups and irreducible graphs

Theorem (O'Nan, Scott, 1979)

All finite primitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, Saxl, Yokoyama, 1987)

If Γ is an irreducible distance transitive graph, and $G \leq Aut(\Gamma)$ acts distance-transitively, then:

- G is of wreath type, and Γ is a graph of Hamming type (well understood); or
- G is of affine type; or
- G is of almost simple type.

Complete classification is close (huge effort by many researchers).

▶ ∢ ⊒ ▶

Definition

An s-arc is a walk of length s (s edges) in which no 3 consecutive vertices contain repetitions.

Image: A image: A

Definition

An s-arc is a walk of length s (s edges) in which no 3 consecutive vertices contain repetitions.

Definition

An s-arc is a walk of length s (s edges) in which no 3 consecutive vertices contain repetitions.

(0, 1, 2, 3) is a 3-arc;

Definition

An s-arc is a walk of length s (s edges) in which no 3 consecutive vertices contain repetitions.

(0, 1, 2, 3) is a 3-arc;

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1)is a 12-arc;

Definition

An *s*-**arc** is a walk of length *s* (*s* edges) in which no 3 consecutive vertices contain repetitions.

(0, 1, 2, 3) is a 3-arc;

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1)is a 12-arc;

but (0, 1, 2, 3, 2, 1) is not a 5-arc.

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Definition and examples

Definition

A graph is s-arc-transitive for some $s \ge 1$ if its automorphism group is transitive on the s-arcs of the graph.

< 17 ▶

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Definition and examples

Definition

A graph is s-arc-transitive for some $s \ge 1$ if its automorphism group is transitive on the s-arcs of the graph.

Examples.

< 17 ▶

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Definition and examples

Definition

A graph is s-arc-transitive for some $s \ge 1$ if its automorphism group is transitive on the s-arcs of the graph.

Examples.

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Definition and examples

Definition

A graph is s-arc-transitive for some $s \ge 1$ if its automorphism group is transitive on the s-arcs of the graph.

Examples.

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Definition and examples

Definition

A graph is s-arc-transitive for some $s \ge 1$ if its automorphism group is transitive on the s-arcs of the graph.

Examples.

< 4 → < 三

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Problems with block quotient reduction

Unfortunately, if \mathcal{P} is a block system for a group G of automorphisms,

- ∢ ≣ ▶

< A ▶
Unfortunately, if \mathcal{P} is a block system for a group G of automorphisms, and G acts *s*-arc-transitively on the graph,

Unfortunately, if \mathcal{P} is a block system for a group G of automorphisms, and G acts *s*-arc-transitively on the graph, G will often not be *s*-arc-transitive on the block quotient graph.

Unfortunately, if \mathcal{P} is a block system for a group G of automorphisms, and G acts *s*-arc-transitively on the graph, G will often not be *s*-arc-transitive on the block quotient graph. (Also recall that a graph may not be a cover of its block quotient.)

Unfortunately, if \mathcal{P} is a block system for a group G of automorphisms, and G acts *s*-arc-transitively on the graph, G will often not be *s*-arc-transitive on the block quotient graph. (Also recall that a graph may not be a cover of its block quotient.)

Examples

• A complete bipartite graph is 3-arc-transitive, but its quotient with respect to the bipartition sets is K_2 , which is just arc-transitive.

Unfortunately, if \mathcal{P} is a block system for a group G of automorphisms, and G acts *s*-arc-transitively on the graph, G will often not be *s*-arc-transitive on the block quotient graph. (Also recall that a graph may not be a cover of its block quotient.)

Examples

- A complete bipartite graph is 3-arc-transitive, but its quotient with respect to the bipartition sets is K_2 , which is just arc-transitive.
- The Coxeter graph is 2-arc-transitive under the action of PGL(2, 7), but the only block systems have 7 blocks of size 4, and the corresponding quotient graphs are each K₇.

Unfortunately, if \mathcal{P} is a block system for a group G of automorphisms, and G acts *s*-arc-transitively on the graph, G will often not be *s*-arc-transitive on the block quotient graph. (Also recall that a graph may not be a cover of its block quotient.)

Examples

- A complete bipartite graph is 3-arc-transitive, but its quotient with respect to the bipartition sets is K_2 , which is just arc-transitive.
- The Coxeter graph is 2-arc-transitive under the action of PGL(2, 7), but the only block systems have 7 blocks of size 4, and the corresponding quotient graphs are each K₇. The action of PGL(2,7) on K₇ is just 1-arc-transitive.

< ロ > < 同 > < 回 > < 回 >

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Using normal quotients

Theorem (Praeger, 1985)

If G acts s-arc-transitively on $\Gamma,$ and $N \triangleleft G$ has at least 3 vertex orbits

< ロ > < 同 > < 三 > <

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Using normal quotients

Theorem (Praeger, 1985)

If G acts s-arc-transitively on Γ , and $N \triangleleft G$ has at least 3 vertex orbits (so the quotient graph is not K_2),

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Using normal quotients

Theorem (Praeger, 1985)

If G acts s-arc-transitively on Γ , and $N \triangleleft G$ has at least 3 vertex orbits (so the quotient graph is not K_2), then G acts s-arc-transitively on the normal quotient graph Γ_N ,

Image: A image: A

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Using normal quotients

Theorem (Praeger, 1985)

If G acts s-arc-transitively on Γ , and $N \triangleleft G$ has at least 3 vertex orbits (so the quotient graph is not K_2), then G acts s-arc-transitively on the normal quotient graph Γ_N , and Γ is a cover of Γ_N .

(日)

Notice that

an *s*-arc-transitive graph will be irreducible (under the normal quotient method)

Notice that

an *s*-arc-transitive graph will be irreducible (under the normal quotient method) if and only if every normal subgroup N of every *s*-arc-transitive group G of automorphisms is either

Notice that

an *s*-arc-transitive graph will be irreducible (under the normal quotient method) if and only if every normal subgroup N of every *s*-arc-transitive group G of automorphisms is either

• transitive (has just one vertex orbit);

Notice that

an *s*-arc-transitive graph will be irreducible (under the normal quotient method) if and only if every normal subgroup N of every *s*-arc-transitive group G of automorphisms is either

- transitive (has just one vertex orbit); or
- has just two vertex orbits (and the original graph is bipartite).

Notice that

an *s*-arc-transitive graph will be irreducible (under the normal quotient method) if and only if every normal subgroup N of every *s*-arc-transitive group G of automorphisms is either

- transitive (has just one vertex orbit); or
- has just two vertex orbits (and the original graph is bipartite).

Definition

A permutation group is **quasiprimitive** if every nontrivial normal subgroup is transitive.

Notice that

an *s*-arc-transitive graph will be irreducible (under the normal quotient method) if and only if every normal subgroup N of every *s*-arc-transitive group G of automorphisms is either

- transitive (has just one vertex orbit); or
- has just two vertex orbits (and the original graph is bipartite).

Definition

A permutation group is **quasiprimitive** if every nontrivial normal subgroup is transitive.

Definition

A permutation group is **bi-quasiprimitive** if it is not quasiprimitive, but every nontrivial normal subgroup has at most two orbits.

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Irreducible graphs, continued

So...

an *s*-arc-transitive graph will be irreducible (under the block quotient method)

< 🗇 🕨 < 🖻 🕨

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Irreducible graphs, continued

So...

an *s*-arc-transitive graph will be irreducible (under the block quotient method) if and only if every group of its automorphisms that acts *s*-arc-transitively, is either quasiprimitive or bi-quasiprimitive.

Theorem (Praeger, 1993)

All finite quasiprimitive permutation groups are classified, into 8 disjoint classes.

Image: A image: A

Theorem (Praeger, 1993)

All finite quasiprimitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, 1993)

Theorem (Praeger, 1993)

All finite quasiprimitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, 1993)

If Γ is an irreducible non-bipartite s-arc-transitive graph, and $G \leq \operatorname{Aut}(\Gamma)$ acts s-arc-transitively, then:

• G is of affine type

Theorem (Praeger, 1993)

All finite quasiprimitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, 1993)

If Γ is an irreducible non-bipartite s-arc-transitive graph, and $G \leq \operatorname{Aut}(\Gamma)$ acts s-arc-transitively, then:

• G is of affine type (classified by Ivanov and Praeger);

Theorem (Praeger, 1993)

All finite quasiprimitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, 1993)

- G is of affine type (classified by Ivanov and Praeger);
- G is of almost simple type

Theorem (Praeger, 1993)

All finite quasiprimitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, 1993)

- G is of affine type (classified by Ivanov and Praeger);
- *G* is of almost simple type (classified for some classes where groups have small rank, by Fang, Hassani, Nochefranca, Praeger and Wang);

Theorem (Praeger, 1993)

All finite quasiprimitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, 1993)

- G is of affine type (classified by Ivanov and Praeger);
- *G* is of almost simple type (classified for some classes where groups have small rank, by Fang, Hassani, Nochefranca, Praeger and Wang);
- G is of twisted wreath type

Theorem (Praeger, 1993)

All finite quasiprimitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, 1993)

- G is of affine type (classified by Ivanov and Praeger);
- *G* is of almost simple type (classified for some classes where groups have small rank, by Fang, Hassani, Nochefranca, Praeger and Wang);
- G is of twisted wreath type (good description by Baddeley);

Theorem (Praeger, 1993)

All finite quasiprimitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, 1993)

- G is of affine type (classified by Ivanov and Praeger);
- *G* is of almost simple type (classified for some classes where groups have small rank, by Fang, Hassani, Nochefranca, Praeger and Wang);
- G is of twisted wreath type (good description by Baddeley); or
- G is of product action type

Theorem (Praeger, 1993)

All finite quasiprimitive permutation groups are classified, into 8 disjoint classes.

Theorem (Praeger, 1993)

- G is of affine type (classified by Ivanov and Praeger);
- *G* is of almost simple type (classified for some classes where groups have small rank, by Fang, Hassani, Nochefranca, Praeger and Wang);
- G is of twisted wreath type (good description by Baddeley); or
- G is of product action type (constructions by Li and Seress).

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Locally (G, s)-arc-transitive graphs

This method has also been used with some success to classify locally (G, s)-arc-transitive graphs:

▲ 同 ▶ → 三 ▶

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Locally (G, s)-arc-transitive graphs

This method has also been used with some success to classify locally (G, s)-arc-transitive graphs:

Definition

The graph Γ with $G \leq \operatorname{Aut}(\Gamma)$ is **locally** (G, s)-arc-transitive if G_v acts s-arc-transitively on all s-arcs whose first vertex is v.

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs **Strongly regular graphs**

Strongly regular graphs

Definition

A strongly regular graph with parameters (n, k, λ, μ)

A (1) > A (2) > A

э

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs **Strongly regular graphs**

Strongly regular graphs

Definition

A strongly regular graph with parameters (n, k, λ, μ) is a graph on n vertices

(日)

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs **Strongly regular graphs**

Strongly regular graphs

Definition

A strongly regular graph with parameters (n, k, λ, μ) is a graph on n vertices that is regular of valency k,

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs **Strongly regular graphs**

Strongly regular graphs

Definition

A strongly regular graph with parameters (n, k, λ, μ) is a graph on n vertices that is regular of valency k, in which every pair of adjacent vertices has λ mutual neighbours,

Image: A = A

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs **Strongly regular graphs**

Strongly regular graphs

Definition

A strongly regular graph with parameters (n, k, λ, μ) is a graph on n vertices that is regular of valency k, in which every pair of adjacent vertices has λ mutual neighbours, and every pair of non-adjacent vertices has μ mutual neighbours.

Image: A = A

Quotients, Block Quotients, and Normal Quotients Classifying families of graphs Strongly regular graphs

Example

A strongly regular graph with parameters (16, 6, 2, 2).

Image: A image: A

-
Quotients, Block Quotients, and Normal Quotients Classifying families of graphs Strongly regular graphs

Example

A strongly regular graph with parameters (16, 6, 2, 2).

(日)

Quotients, Block Quotients, and Normal Quotients Classifying families of graphs Strongly regular graphs

Example

A strongly regular graph with parameters (16, 6, 2, 2).

(日)

Quotients, Block Quotients, and Normal Quotients Classifying families of graphs Strongly regular graphs

Example

æ

More examples

• All rank 3 graphs are vertex-transitive, edge-transitive and strongly regular.

A 10

More examples

- All rank 3 graphs are vertex-transitive, edge-transitive and strongly regular. This includes
 - Kneser graphs with k = 2;

- **→** → **→**

More examples

- All rank 3 graphs are vertex-transitive, edge-transitive and strongly regular. This includes
 - Kneser graphs with k = 2; and
 - Paley graphs.

- **→** → **→**

More examples

- All rank 3 graphs are vertex-transitive, edge-transitive and strongly regular. This includes
 - Kneser graphs with k = 2; and
 - Paley graphs.
- There are also vertex-transitive, edge-transitive strongly regular graphs that are not rank 3;

More examples

- All rank 3 graphs are vertex-transitive, edge-transitive and strongly regular. This includes
 - Kneser graphs with k = 2; and
 - Paley graphs.
- There are also vertex-transitive, edge-transitive strongly regular graphs that are not rank 3; some Latin square graphs are examples.

Quotients, Block Quotients, and Normal Quotients Classifying families of graphs

Reduction works

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs Strongly regular graphs

Theorem (M., Praeger, Spiga, 2009)

A normal quotient of a vertex-transitive, edge-transitive strongly regular graph is vertex- and edge-transitive, and strongly regular.

▲ 同 ▶ → 三 ▶

Quotients, Block Quotients, and Normal Quotients Classifying families of graphs Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs **Strongly regular graphs**

Irreducible graphs

We can reduce no further if either:

- ● ● ●

Quotients, Block Quotients, and Normal Quotients Classifying families of graphs Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs **Strongly regular graphs**

Irreducible graphs

We can reduce no further if either:

• we have a complete graph;

A 10

Irreducible graphs

We can reduce no further if either:

- we have a complete graph; or
- every vertex-transitive, edge-transitive subgroup G of Aut(Γ), is quasiprimitive.

Quotients, Block Quotients, and Normal Quotients Classifying families of graphs	Distance transitive graphs Vertex-transitive, <i>s</i> -arc-transitive graphs Strongly regular graphs
--	--

Main result

Theorem (M., Praeger, Spiga, 2009)

If Γ is a strongly regular graph, and $G \leq \operatorname{Aut}(\Gamma)$ acts transitively on the vertices and edges, then G cannot be a holomorphic simple group.

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs **Strongly regular graphs**

Some other interesting results

Theorem (M., Praeger, Spiga, 2009)

The only vertex- and edge-transitive strongly regular graphs that have K_2 as a normal quotient, are the complete bipartite graphs.

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs **Strongly regular graphs**

Some other interesting results

Theorem (M., Praeger, Spiga, 2009)

The only vertex- and edge-transitive strongly regular graphs that have K_2 as a normal quotient, are the complete bipartite graphs.

Theorem (M., Praeger, Spiga, 2009)

The only vertex- and edge-transitive strongly regular graphs that have K_3 as a normal quotient, are the complete tripartite graphs, and $K_3 \square K_3$.

• □ ▶ • • □ ▶ • • □ ▶

Distance transitive graphs Vertex-transitive, *s*-arc-transitive graphs **Strongly regular graphs**

Some other interesting results

Theorem (M., Praeger, Spiga, 2009)

The only vertex- and edge-transitive strongly regular graphs that have K_2 as a normal quotient, are the complete bipartite graphs.

Theorem (M., Praeger, Spiga, 2009)

The only vertex- and edge-transitive strongly regular graphs that have K_3 as a normal quotient, are the complete tripartite graphs, and $K_3 \square K_3$.

Theorem (M., Praeger, Spiga, 2009)

The graph $K_b \square K_b$ has K_b as a normal quotient if and only if b is a prime power; otherwise, $K_b \square K_b$ is irreducible.

< ロト < 同ト < 三ト <