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Crosscovers: special covers (regular, irregular)

X = connected graph, Γ = abelian group. Crossvoltage assignments

ζ : E (X )→ Γ, e 7→ ζe crossvoltages assigned to unoriented edges

Derived crosscover Cr(X , ζ)

vertices = V (X )× Γ, edges = E (X )× Γ
(e, g) connects (u, g) and (v , ζe − g)
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Example: Line graph of the Petersen graph

A Z3-crosscover of K5
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Example: Cayley crosscovers

Crosscovers of monopoles

Cayley sum graphs

A subclass of Cayley crosscovers: g , h ∈ Γ adjacent iff g + h ∈ S .
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Motivation

Stability of graphs

S. Wilson, Unexpected symmetries of graphs, JCTB ’08

Aut(X ) lifts to CDC(X ) as Z2 ×Aut(X ). Graph X is unstable if
Aut(CDC(X )) > Z2 ×Aut(X ). Wilson: conditions for unstability

One of these is: X is a Zn-crosscover of a smaller graph.

(3,6)-fullerenes

Conjecture of Fowler, ’95: spectrum = [3,−1,−1,−1] ∪ L ∪ −L

DeVos, Goddyn, Mohar, Šámal, JCTB ’09 : Cayley sum graphs!

Spectrum determined easily via complex irreducible characters
(similarly as for Cayley graphs)

Develop the general theory of crosscovers

Interesting in its own right

Certain irregular covers can be studied via abelian groups
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Developing the general theory – Main questions

Basics

Unique path-lifting via crossvoltages, action of π(X , b)

Number of components, connectedness

Which crosscovers are regular/irregular as covers

Recognition of crosscovers

Comparing symmetries of Cr(X ) and X

Lifting and projecting automorphisms, Group extensions

Decomposition of crosscovers

And more

Using tools from Linear algebra and Representaion theory

Algorithmic and complexity aspects

Applications
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Cr(X ) connected: regular or irregular as a cover?

X = bipartite

Always a regular cover.

CT ∼= Γ

Action of CT: τa : g 7→ a + g and τ−a : g 7→ −a + g
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Cr(X ) connected: regular or irregular as a cover?

X 6= bipartite, ∃ odd closed walk ζW = 0

Regular only if Γ elementary abelian 2-group.

CT ∼= Z2(Γ). Largest elementary abelian 2-subgroup of Γ

Action of CT: τa : g 7→ a + g , where 2a = 0
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Cr(X ) connected: regular or irregular as a cover?

X 6= bipartite, no odd closed walk ζW = 0

Always a regular cover.

CT ∼= {1,−1}n Γ0 ∼= (Γ, ∗), where g ∗ h = σh · g + h

CT acts as τa : g 7→ σg · a + g on vertices reachable by trivial
voltage walks of even length, and as τ−a otherwise.
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Thank you!
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