Edge Transitive Cayley Graphs of Square-free Order

Zai Ping Lu

Center for Combinatorics Nankai University Tianjin, 300071, China email: lu@nankai.edu.cn

Let Γ be a (finite, connected and regular) graph.

Let Γ be a (finite, connected and regular) graph. $V\Gamma, E\Gamma, \operatorname{Aut}\Gamma$. Let $X \leq \operatorname{Aut}\Gamma$.

Let Γ be a (finite, connected and regular) graph.

 $V\Gamma, E\Gamma, \operatorname{Aut}\Gamma.$ Let $X \leq \operatorname{Aut}\Gamma.$

X-vertex transitive graph: X acts transitively on $V\Gamma$.

- Let Γ be a (finite, connected and regular) graph.
- $V\Gamma$, $E\Gamma$, $\operatorname{Aut}\Gamma$. Let $X \leq \operatorname{Aut}\Gamma$.
- X-vertex transitive graph: X acts transitively on $V\Gamma$.
- X-edge transitive graph: X acts transitively on $E\Gamma$.

- Let Γ be a (finite, connected and regular) graph.
- $V\Gamma, E\Gamma, \operatorname{Aut}\Gamma.$ Let $X \leq \operatorname{Aut}\Gamma.$
- X-vertex transitive graph: X acts transitively on $V\Gamma$.
- X-edge transitive graph: X acts transitively on $E\Gamma$.
- Cayley graph $\Gamma = Cay(G, S)$: $V\Gamma = G$ and $S \subset G$ such that $x, y \in V\Gamma$ are adjacent if and only if $yx^{-1} \in S$.

- Let Γ be a (finite, connected and regular) graph.
- $V\Gamma, E\Gamma, \operatorname{Aut}\Gamma.$ Let $X \leq \operatorname{Aut}\Gamma.$
- X-vertex transitive graph: X acts transitively on $V\Gamma$.
- X-edge transitive graph: X acts transitively on $E\Gamma$.
- Cayley graph $\Gamma = Cay(G, S)$: $V\Gamma = G$ and $S \subset G$ such that $x, y \in V\Gamma$ are adjacent if and only if $yx^{-1} \in S$.

$$g: G = V \Gamma \to V \Gamma, \ x \mapsto xg.$$

- Let Γ be a (finite, connected and regular) graph.
- $V\Gamma, E\Gamma, \operatorname{Aut}\Gamma.$ Let $X \leq \operatorname{Aut}\Gamma.$
- X-vertex transitive graph: X acts transitively on $V\Gamma$.
- X-edge transitive graph: X acts transitively on $E\Gamma$.
- Cayley graph $\Gamma = Cay(G, S)$: $V\Gamma = G$ and $S \subset G$ such that $x, y \in V\Gamma$ are adjacent if and only if $yx^{-1} \in S$.

$$g: G = V\Gamma \to V\Gamma, \ x \mapsto xg.$$

 $\mathbf{N}_{\mathsf{Aut}\Gamma}(G) = G: \mathsf{Aut}(G, S), \text{ where}$ $\mathsf{Aut}(G, S) = \{\sigma \in \mathsf{Aut}(G) \mid S^{\sigma} = S\}.$

- Let Γ be a (finite, connected and regular) graph.
- $V\Gamma, E\Gamma, \operatorname{Aut}\Gamma.$ Let $X \leq \operatorname{Aut}\Gamma.$
- X-vertex transitive graph: X acts transitively on $V\Gamma$.
- X-edge transitive graph: X acts transitively on $E\Gamma$.
- Cayley graph $\Gamma = Cay(G, S)$: $V\Gamma = G$ and $S \subset G$ such that $x, y \in V\Gamma$ are adjacent if and only if $yx^{-1} \in S$.

$$g: G = V\Gamma \to V\Gamma, \ x \mapsto xg.$$

 $\mathbf{N}_{\mathsf{Aut}\Gamma}(G) = G: \mathsf{Aut}(G, S), \text{ where}$ $\mathsf{Aut}(G, S) = \{\sigma \in \mathsf{Aut}(G) \mid S^{\sigma} = S\}.$

 $\Gamma = \mathsf{Cay}(G, S)$ is said to be normal if $G \triangleleft \mathsf{Aut}\Gamma$, and Γ is said to be normal edge transitive if $\mathbf{N}_{\mathsf{Aut}\Gamma}(G)$ is transitive on $E\Gamma$.

Two primes case: Praeger, Wang and Xu (1993), Wang and Xu (1993), Praeger and Xu (1993), Alspach and Xu (1994), Lu and Xu (2003), etc.;

.

- Two primes case: Praeger, Wang and Xu (1993), Wang and Xu (1993), Praeger and Xu (1993), Alspach and Xu (1994), Lu and Xu (2003), etc.;
- Three primes case: Miller and Praeger (1994), Gamble and Praeger (2000), Iranmanesh and Praeger (2001);

.

- Two primes case: Praeger, Wang and Xu (1993), Wang and Xu (1993), Praeger and Xu (1993), Alspach and Xu (1994), Lu and Xu (2003), etc.;
- Three primes case: Miller and Praeger (1994), Gamble and Praeger (2000), Iranmanesh and Praeger (2001);
- **Circulant graphs**: Li, Marušič and Morris (2001);

- Two primes case: Praeger, Wang and Xu (1993), Wang and Xu (1993), Praeger and Xu (1993), Alspach and Xu (1994), Lu and Xu (2003), etc.;
- Three primes case: Miller and Praeger (1994), Gamble and Praeger (2000), Iranmanesh and Praeger (2001);

•••••

- Circulant graphs: Li, Marušič and Morris (2001);
- **Primitive case**: Li and Seress (2005).

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)

Imprimitive case:

• If \mathcal{B} is an X-invariant partition of Ω , then $G^{\mathcal{B}}$ contains a regular subgroup of $X^{\mathcal{B}}$.

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)

- If \mathcal{B} is an X-invariant partition of Ω , then $G^{\mathcal{B}}$ contains a regular subgroup of $X^{\mathcal{B}}$.
- X is soluble if X has soluble normal transitive subgroups.

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)

- If \mathcal{B} is an X-invariant partition of Ω , then $G^{\mathcal{B}}$ contains a regular subgroup of $X^{\mathcal{B}}$.
- X is soluble if X has soluble normal transitive subgroups.
- *X* = *N*:*Y* for some *Y* ≤ *X*, where *N* ⊲ *X* is semiregular such that *X*/*N* acts faithfully on the *N*-orbits.

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)

- If \mathcal{B} is an X-invariant partition of Ω , then $G^{\mathcal{B}}$ contains a regular subgroup of $X^{\mathcal{B}}$.
- X is soluble if X has soluble normal transitive subgroups.
- *X* = *N*:*Y* for some *Y* ≤ *X*, where *N* ⊲ *X* is semiregular such that *X*/*N* acts faithfully on the *N*-orbits.
- Let T be a minimal normal subgroup of X. If T transitive, then T is simple, X has a regular subgroup C:R for $R \leq G$ and $C = \mathbf{C}_X(T)$, and (T, T_α, R, C) is explicitly known.

For $X \leq \operatorname{Aut}\Gamma$ and an X-invariant partition \mathcal{B} of $V\Gamma$.

For $X \leq \operatorname{Aut}\Gamma$ and an X-invariant partition \mathcal{B} of $V\Gamma$.

Quotient graph $\Gamma_{\mathcal{B}}$ is defined on \mathcal{B} with two blocks $B_1, B_2 \in \mathcal{B}$ are adjacent if and only if some $\alpha_1 \in B_2$ is adjacent to some $\alpha_2 \in B_2$ in Γ ;

For $X \leq \operatorname{Aut}\Gamma$ and an X-invariant partition \mathcal{B} of $V\Gamma$.

Quotient graph $\Gamma_{\mathcal{B}}$ is defined on \mathcal{B} with two blocks $B_1, B_2 \in \mathcal{B}$ are adjacent if and only if some $\alpha_1 \in B_2$ is adjacent to some $\alpha_2 \in B_2$ in Γ ;

(*m*-fold) cover: Γ and $\Gamma_{\mathcal{B}}$ has the same valency.

For $X \leq \operatorname{Aut}\Gamma$ and an X-invariant partition \mathcal{B} of $V\Gamma$.

Quotient graph $\Gamma_{\mathcal{B}}$ is defined on \mathcal{B} with two blocks $B_1, B_2 \in \mathcal{B}$ are adjacent if and only if some $\alpha_1 \in B_2$ is adjacent to some $\alpha_2 \in B_2$ in Γ ;

(*m*-fold) cover: Γ and $\Gamma_{\mathcal{B}}$ has the same valency.

If \mathcal{B} is the set of the *N*-orbits on $V\Gamma$ for some $N \triangleleft X$, then $\Gamma_{\mathcal{B}}$, denoted by Γ_N , is called a normal quotient of Γ , and Γ is called a normal cover of Γ_N if further Γ is a cover of Γ_N .

For $X \leq \operatorname{Aut}\Gamma$ and an X-invariant partition \mathcal{B} of $V\Gamma$.

Quotient graph $\Gamma_{\mathcal{B}}$ is defined on \mathcal{B} with two blocks $B_1, B_2 \in \mathcal{B}$ are adjacent if and only if some $\alpha_1 \in B_2$ is adjacent to some $\alpha_2 \in B_2$ in Γ ;

(*m*-fold) cover: Γ and $\Gamma_{\mathcal{B}}$ has the same valency.

If \mathcal{B} is the set of the *N*-orbits on $V\Gamma$ for some $N \triangleleft X$, then $\Gamma_{\mathcal{B}}$, denoted by Γ_N , is called a normal quotient of Γ , and Γ is called a normal cover of Γ_N if further Γ is a cover of Γ_N . Let $\Gamma = \mathsf{Cay}(G, S)$ be a Cayley graph of square-free order.

Then each quotient $\Gamma_{\mathcal{B}}$ is also a Cayley graph.

Let $\Gamma = Cay(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \le X \le Aut\Gamma$. Then

(1) $\Gamma = K_n, X = \mathbb{Z}_n: \mathbb{Z}_{\frac{n-1}{2}}$ with *n* prime or *X* is 3-transitive;

Let $\Gamma = Cay(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \le X \le Aut\Gamma$. Then

(1) $\Gamma = K_n, X = \mathbb{Z}_n: \mathbb{Z}_{\frac{n-1}{2}}$ with *n* prime or *X* is 3-transitive;

(2) $\Gamma = \Sigma[\overline{\mathsf{K}}_m]$, where Σ is an edge transitive Cayley graph;

Let $\Gamma = Cay(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \le X \le Aut\Gamma$. Then

(1) $\Gamma = \mathsf{K}_n, X = \mathbb{Z}_n: \mathbb{Z}_{\frac{n-1}{2}}$ with *n* prime or *X* is 3-transitive;

(2) $\Gamma = \Sigma[\overline{K}_m]$, where Σ is an edge transitive Cayley graph;

(3) $\Gamma = \Sigma[\overline{K}_m] - m\Sigma$, where Σ is an edge transitive Cayley graph;

Let $\Gamma = Cay(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \le X \le Aut\Gamma$. Then

(1) $\Gamma = K_n, X = \mathbb{Z}_n: \mathbb{Z}_{\frac{n-1}{2}}$ with *n* prime or *X* is 3-transitive;

(2) $\Gamma = \Sigma[\overline{K}_m]$, where Σ is an edge transitive Cayley graph;

(3) $\Gamma = \Sigma[\overline{\mathsf{K}}_m] - m\Sigma$, where Σ is an edge transitive Cayley graph;

(4) $T = PSL(2, 11) \lhd X$, and Γ_T is a bipartite edge transitive Cayley graph of order $\frac{|G|}{11}$;

Let $\Gamma = Cay(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \le X \le Aut\Gamma$. Then

(1) $\Gamma = K_n, X = \mathbb{Z}_n: \mathbb{Z}_{\frac{n-1}{2}}$ with *n* prime or *X* is 3-transitive;

(2) $\Gamma = \Sigma[\overline{\mathsf{K}}_m]$, where Σ is an edge transitive Cayley graph;

(3) $\Gamma = \Sigma[\overline{\mathsf{K}}_m] - m\Sigma$, where Σ is an edge transitive Cayley graph;

(4) $T = PSL(2, 11) \triangleleft X$, and Γ_T is a bipartite edge transitive Cayley graph of order $\frac{|G|}{11}$;

(5) $T = PSL(d,q) \triangleleft X$ for some d > 2, and Γ_T is a bipartite edge transitive Cayley graph of order $\frac{|G|(q-1)}{q^d-1}$;

Let $\Gamma = Cay(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \le X \le Aut\Gamma$. Then

(1) $\Gamma = K_n, X = \mathbb{Z}_n: \mathbb{Z}_{\frac{n-1}{2}}$ with *n* prime or *X* is 3-transitive;

(2) $\Gamma = \Sigma[\overline{\mathsf{K}}_m]$, where Σ is an edge transitive Cayley graph;

(3) $\Gamma = \Sigma[\overline{\mathsf{K}}_m] - m\Sigma$, where Σ is an edge transitive Cayley graph;

- (4) $T = PSL(2, 11) \lhd X$, and Γ_T is a bipartite edge transitive Cayley graph of order $\frac{|G|}{11}$;
- (5) $T = PSL(d,q) \triangleleft X$ for some d > 2, and Γ_T is a bipartite edge transitive Cayley graph of order $\frac{|G|(q-1)}{q^d-1}$;
- (6) X has a normal regular subgroup \tilde{G} with X/\tilde{G} abelian;

Let $\Gamma = Cay(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \le X \le Aut\Gamma$. Then

(1) $\Gamma = K_n, X = \mathbb{Z}_n: \mathbb{Z}_{\frac{n-1}{2}}$ with *n* prime or *X* is 3-transitive;

(2) $\Gamma = \Sigma[\overline{\mathsf{K}}_m]$, where Σ is an edge transitive Cayley graph;

(3) $\Gamma = \Sigma[\overline{\mathsf{K}}_m] - m\Sigma$, where Σ is an edge transitive Cayley graph;

- (4) $T = PSL(2, 11) \lhd X$, and Γ_T is a bipartite edge transitive Cayley graph of order $\frac{|G|}{11}$;
- (5) $T = PSL(d,q) \triangleleft X$ for some d > 2, and Γ_T is a bipartite edge transitive Cayley graph of order $\frac{|G|(q-1)}{q^d-1}$;
- (6) X has a normal regular subgroup \tilde{G} with X/\tilde{G} abelian;
- (7) $\prod_i \mathbb{Z}_{p_i} \times \prod_j T_j \leq X \leq (\prod_i \operatorname{AGL}(1, p_i) \times \prod_j T_j).O$ for distinct primes p_i and non-isomorphic non-abelian simple groups T_j .

Locally primitive case

A graph Γ is said to be X-locally primitive if X_{α} induces a primitive permutation group on $\Gamma(\alpha)$ for each $\alpha \in V\Gamma$.

Cor 1 Let G be a group of square-free order and Γ a connected Cayley graph of G. If Γ is X-locally primitive for $G \leq X \leq \text{Aut}\Gamma$, then

Locally primitive case

A graph Γ is said to be X-locally primitive if X_{α} induces a primitive permutation group on $\Gamma(\alpha)$ for each $\alpha \in V\Gamma$.

- **Cor 1** Let G be a group of square-free order and Γ a connected Cayley graph of G. If Γ is X-locally primitive for $G \leq X \leq \operatorname{Aut}\Gamma$, then
 - (1) Γ is isomorphic to one of well-defined graphs: $K_n, K_n^{(2)}, K_{n,n}$, the point-block (non-)incidence graph of the symmetric design $S_2(2,5;11)$, the point-hyperplane (non-)incidence graph of the projective geometry PG(d-1,q); or

Locally primitive case

A graph Γ is said to be X-locally primitive if X_{α} induces a primitive permutation group on $\Gamma(\alpha)$ for each $\alpha \in V\Gamma$.

- **Cor 1** Let G be a group of square-free order and Γ a connected Cayley graph of G. If Γ is X-locally primitive for $G \leq X \leq \operatorname{Aut}\Gamma$, then
 - (1) Γ is isomorphic to one of well-defined graphs: $K_n, K_n^{(2)}, K_{n,n}$, the point-block (non-)incidence graph of the symmetric design $S_2(2,5;11)$, the point-hyperplane (non-)incidence graph of the projective geometry PG(d-1,q); or
 - (2) Γ has prime valency p and $X = D_{2n}:\mathbb{Z}_p$; or

Locally primitive case

A graph Γ is said to be X-locally primitive if X_{α} induces a primitive permutation group on $\Gamma(\alpha)$ for each $\alpha \in V\Gamma$.

- **Cor 1** Let G be a group of square-free order and Γ a connected Cayley graph of G. If Γ is X-locally primitive for $G \leq X \leq \operatorname{Aut}\Gamma$, then
 - (1) Γ is isomorphic to one of well-defined graphs: $K_n, K_n^{(2)}, K_{n,n}$, the point-block (non-)incidence graph of the symmetric design $S_2(2,5;11)$, the point-hyperplane (non-)incidence graph of the projective geometry PG(d-1,q); or
 - (2) Γ has prime valency p and $X = D_{2n}:\mathbb{Z}_p$; or
 - (3) X = N:Y, Y is almost simple, T := soc(Y) ⊲ X, T has at most two orbits on VΓ, X has a subgroup C:R acting regularly on each of T-orbits, where C ≤ N, R ≤ G, and all possible triples (T, R, C) are known.

A graph Γ is said to be 2-arc transitive if some $X \leq \operatorname{Aut}\Gamma$ acts transitively on the 2-arcs of Γ .

Cor 2 Let G be a group of square-free order and Γ a connected 2-arc transitive Cayley graph of G with valency $k \ge 5$. Then one of the following holds

A graph Γ is said to be 2-arc transitive if some $X \leq \operatorname{Aut}\Gamma$ acts transitively on the 2-arcs of Γ .

- **Cor 2** Let G be a group of square-free order and Γ a connected 2-arc transitive Cayley graph of G with valency $k \ge 5$. Then one of the following holds
 - (1) Γ is isomorphic to one of well-defined graphs: the graphs in Cor
 1 (1), and 8 graphs constructed from AutPSL(5, 2), A₇,
 PSL(2, 59), PGL(2, 59) and M₁₁.

A graph Γ is said to be 2-arc transitive if some $X \leq \operatorname{Aut}\Gamma$ acts transitively on the 2-arcs of Γ .

- **Cor 2** Let G be a group of square-free order and Γ a connected 2-arc transitive Cayley graph of G with valency $k \ge 5$. Then one of the following holds
 - (1) Γ is isomorphic to one of well-defined graphs: the graphs in Cor 1 (1), and 8 graphs constructed from AutPSL(5, 2), A₇, PSL(2, 59), PGL(2, 59) and M₁₁.
 - (2) $val(\Gamma) = p^e$ or p^{e-1} , $\operatorname{Aut}\Gamma = ([c] \times \operatorname{PSL}(2, p^e)).o$, where c or $\frac{c}{2}$ is a square-free divisor of $\frac{p(p^e-1)}{(2,p^e-1)}$ and $o \mid e(2, p^e-1)$;

A graph Γ is said to be 2-arc transitive if some $X \leq \operatorname{Aut}\Gamma$ acts transitively on the 2-arcs of Γ .

- **Cor 2** Let G be a group of square-free order and Γ a connected 2-arc transitive Cayley graph of G with valency $k \ge 5$. Then one of the following holds
 - (1) Γ is isomorphic to one of well-defined graphs: the graphs in Cor 1 (1), and 8 graphs constructed from AutPSL(5, 2), A₇, PSL(2, 59), PGL(2, 59) and M₁₁.
 - (2) $val(\Gamma) = p^e$ or p^{e-1} , $Aut\Gamma = ([c] \times PSL(2, p^e)).o$, where c or $\frac{c}{2}$ is a square-free divisor of $\frac{p(p^e-1)}{(2,p^e-1)}$ and $o \mid e(2, p^e-1)$;
 - (3) *m*-fold covers of the point-hyperplane (non-)incidence graph of PG(d-1,q), where m > 1 is a square-free divisor of $\frac{q-1}{(d,q-1)}$.

Let G be a group of square-free order and Γ be a connected edge transitive tetravalent Cayley graph of G. Then

(1) Aut Γ ≅ G:Z₂² or G:Z₄, Γ is arc regular and isomorphic a well-defined graph; or

Let G be a group of square-free order and Γ be a connected edge transitive tetravalent Cayley graph of G. Then

- (1) Aut Γ ≅ G:Z₂² or G:Z₄, Γ is arc regular and isomorphic a well-defined graph; or
- (2) Aut Γ ≅ G:Z₂, Γ is edge regular and isomorphic a well-defined graph; or

Let G be a group of square-free order and Γ be a connected edge transitive tetravalent Cayley graph of G. Then

- (1) Aut Γ ≅ G:Z₂² or G:Z₄, Γ is arc regular and isomorphic a well-defined graph; or
- (2) Aut Γ ≅ G:Z₂, Γ is edge regular and isomorphic a well-defined graph; or

(3)
$$\Gamma \cong \mathbf{C}_n[\overline{\mathsf{K}}_2]$$
 and $\operatorname{Aut}\Gamma \cong \mathbb{Z}_2^n: \mathbb{D}_{2n}$; or

Let G be a group of square-free order and Γ be a connected edge transitive tetravalent Cayley graph of G. Then

- (1) Aut Γ ≅ G:Z₂² or G:Z₄, Γ is arc regular and isomorphic a well-defined graph; or
- (2) Aut Γ ≅ G:Z₂, Γ is edge regular and isomorphic a well-defined graph; or

(3)
$$\Gamma \cong \mathbf{C}_n[\overline{\mathsf{K}}_2]$$
 and $\operatorname{Aut}\Gamma \cong \mathbb{Z}_2^n: \mathbb{D}_{2n}$; or

(4) Γ is *t*-transitive and $(Aut\Gamma, G, \Gamma, t)$ is explicitly known.

T 1	1	1
Tab		
140	JU.	1.

Line	$Aut \Gamma$	G	Г	t
1	S_5	\mathbb{Z}_5	K_5	2
2	$S_5 imes \mathbb{Z}_2$	$\mathbb{Z}_{10}, \mathrm{D}_{10}$	$K_{5,5}-5K_2$	2
3	$S_5 \times D_6$	$\mathrm{D}_6{ imes}\mathbb{Z}_5,\mathrm{D}_{30}$	unique	2
4	$\mathrm{PGL}(2,7)$	$\mathbb{Z}_7:\mathbb{Z}_3$	$P_{7,3}$	1
5	$\mathrm{PGL}(2,7) \times \mathbb{Z}_2$	$\mathbb{Z}_2{ imes}(\mathbb{Z}_7{:}\mathbb{Z}_3),\mathbb{Z}_7{:}\mathbb{Z}_6$	${ m P}_{7,3}^{(2)}$	1
6	$\mathrm{PGL}(2,7) \times \mathrm{D}_{2l}$	$\mathbb{Z}_l \times (\mathbb{Z}_7:\mathbb{Z}_6), \mathbb{D}_{2l} \times (\mathbb{Z}_7:\mathbb{Z}_3)$	unique	1

$$\begin{aligned} 3 \quad & G = \langle c \rangle \times (\langle a \rangle : \langle b \rangle) \cong \mathbb{Z}_5 \times \mathcal{D}_6, S = \{cb, c^2ab, (cb)^{-1}, (c^2ab)^{-1}\}.\\ & G = \langle a \rangle : \langle b \rangle \cong \mathcal{D}_{30}, S = \{ab, a^2b, a^4b, a^8b\}.\\ 4 \quad & G = \langle a, b \mid a^b = a^2, a^7 = b^3 = 1 \rangle, S = \{b, ab, b^{-1}, (ab)^{-1}\}.\\ 5 \quad & G = \langle c \rangle \times \langle a, b \mid a^b = a^2, a^7 = b^3 = 1 \rangle, S = \{cb, cab, cb^{-1}, c(ab)^{-1}\}.\\ & G = \langle a, b \mid a^b = a^3, a^7 = b^6 = 1 \rangle, S = \{cb, cb, c^{-1}ab, (cb)^{-1}, (c^{-1}ab)^{-1}\}.\\ 6 \quad & G = \langle c \rangle \times \langle a, b \mid a^b = a^3, a^7 = b^6 = 1 \rangle, S = \{cb, cb, c^{-1}ab, (cb)^{-1}, (c^{-1}ab)^{-1}\}.\\ & G = \langle a, b \mid a^b = a^r, a^{7l} = b^6 = 1 \rangle, S = \{b, ab, b^{-1}, (ab)^{-1}\}.\end{aligned}$$

Tab	1
Iau	1.

Line	$Aut\Gamma$	G	Г	s
1	$PSL(3,2):\mathbb{Z}_2$	D ₁₄	$K_{7,7}-\mathrm{PG}(2,2)$	2
2	$PSL(3,3):\mathbb{Z}_2$	D_{26}	PG(2,3)	4
3	$\mathrm{PGL}(2,11)$	\mathbb{Z}_{11} : \mathbb{Z}_5	$P_{11,5}$	2
4	$\operatorname{PGL}(2,11) \times \mathbb{Z}_2$	$\mathbb{Z}_2 \times (\mathbb{Z}_{11}:\mathbb{Z}_5), \mathbb{Z}_{11}:\mathbb{Z}_{10}$	$P_{11,5}^{(2)}$	2
5	$(PSL(2,11)\times\mathbb{Z}_3):\mathbb{Z}_2$	$\mathbb{Z}_3 imes (\mathbb{Z}_{11} : \mathbb{Z}_5)$	unique	2
6	$\mathbb{Z}_2 \times (\mathrm{PSL}(2, 11) \times (\mathbb{Z}_3) : \mathbb{Z}_2)$	$\mathbb{Z}_{33}:\mathbb{Z}_{10},\mathbb{Z}_6 imes(\mathbb{Z}_{11}:\mathbb{Z}_5)$	$\Gamma^{(2)}$	2
7	$\mathrm{PSL}(2,23)$	\mathbb{Z}_{23} : \mathbb{Z}_{11}	$P_{23,11}$	2
8	$\mathrm{PSL}(2,23) \times \mathbb{Z}_2$	$\mathbb{Z}_2{ imes}(\mathbb{Z}_{23}{:}\mathbb{Z}_{11})$	$P_{23,11}^{(2)}$	2
9	$\mathrm{PSL}(2,23) \times \mathbb{Z}_2$	$\mathbb{Z}_2 imes (\mathbb{Z}_{23} : \mathbb{Z}_{11})$	two	2
10	$PSL(2,23) \times D_6$	$D_6 \times (\mathbb{Z}_{23}:\mathbb{Z}_{11})$	unique	2

line 9 $\operatorname{Cay}(G, \{abc, (ab)^{-1}c, b^4, b^7\})$ and $\operatorname{Cay}(G, \{ab, (ab)^{-1}, b^4c, b^7c\})$ for $G = \langle a \rangle : \langle b \rangle \times \langle c \rangle \cong \mathbb{Z}_{23} : \mathbb{Z}_{11} \times \mathbb{Z}_2$ with $a^b = a^2$.

line 10 $\operatorname{Cay}(G, \{ab, (ab)^{-1}, a^{23}b^4, (a^{23}b^4)^{-1}\})$ for $G = \langle a \rangle : \langle b \rangle \cong \mathbb{Z}_{69} : \mathbb{Z}_{22}$ with $a^b = a^2$.

Thank You!