Edge Transitive Cayley Graphs of Square-free Order

Zai Ping Lu

Center for Combinatorics
Nankai University
Tianjin, 300071, China
email:lu@nankai.edu.cn

Definitions

Let Γ be a (finite, connected and regular) graph.

Definitions

Let Γ be a (finite, connected and regular) graph.
$V \Gamma, E \Gamma, \operatorname{Aut} \Gamma$. Let $X \leq \operatorname{Aut} \Gamma$.

Definitions

Let Γ be a (finite, connected and regular) graph.
$V \Gamma, ~ Е Г, \operatorname{Aut} \Gamma$. Let $X \leq \operatorname{Aut} \Gamma$.
X-vertex transitive graph: X acts transitively on $V \Gamma$.

Definitions

Let Γ be a (finite, connected and regular) graph.
$V \Gamma, E \Gamma, \operatorname{Aut} \Gamma$. Let $X \leq \operatorname{Aut} \Gamma$.
X-vertex transitive graph: X acts transitively on $V \Gamma$.
X-edge transitive graph: X acts transitively on $E \Gamma$.

Definitions

Let Γ be a (finite, connected and regular) graph.
$V \Gamma, E \Gamma, \operatorname{Aut} \Gamma$. Let $X \leq \operatorname{Aut} \Gamma$.
X-vertex transitive graph: X acts transitively on $V \Gamma$.
X-edge transitive graph: X acts transitively on $E \Gamma$.
Cayley graph $\Gamma=\operatorname{Cay}(G, S): V \Gamma=G$ and $S \subset G$ such that $x, y \in V \Gamma$ are adjacent if and only if $y x^{-1} \in S$.

Definitions

Let Γ be a (finite, connected and regular) graph.
$V \Gamma, ~ Е \Gamma, \operatorname{Aut} \Gamma$. Let $X \leq \operatorname{Aut} \Gamma$.
X-vertex transitive graph: X acts transitively on $V \Gamma$.
X-edge transitive graph: X acts transitively on $E \Gamma$.
Cayley graph $\Gamma=\operatorname{Cay}(G, S): V \Gamma=G$ and $S \subset G$ such that $x, y \in V \Gamma$ are adjacent if and only if $y x^{-1} \in S$.
$g: G=V \Gamma \rightarrow V \Gamma, x \mapsto x g$.

Definitions

Let Γ be a (finite, connected and regular) graph.
$V \Gamma, E \Gamma, \operatorname{Aut} \Gamma . \quad$ Let $X \leq \operatorname{Aut} \Gamma$.
X-vertex transitive graph: X acts transitively on $V \Gamma$.
X-edge transitive graph: X acts transitively on $E \Gamma$.
Cayley graph $\Gamma=\operatorname{Cay}(G, S): V \Gamma=G$ and $S \subset G$ such that $x, y \in V \Gamma$ are adjacent if and only if $y x^{-1} \in S$.
$g: G=V \Gamma \rightarrow V \Gamma, x \mapsto x g$.
$\mathbf{N}_{\mathrm{Aut} \Gamma}(G)=G: \operatorname{Aut}(G, S)$, where
$\operatorname{Aut}(G, S)=\left\{\sigma \in \operatorname{Aut}(G) \mid S^{\sigma}=S\right\}$.

Definitions

Let Γ be a (finite, connected and regular) graph.
$V \Gamma, E \Gamma$, Aut $\Gamma . \quad$ Let $X \leq \operatorname{Aut} \Gamma$.
X-vertex transitive graph: X acts transitively on $V \Gamma$.
X-edge transitive graph: X acts transitively on $E \Gamma$.
Cayley graph $\Gamma=\operatorname{Cay}(G, S): V \Gamma=G$ and $S \subset G$ such that $x, y \in V \Gamma$ are adjacent if and only if $y x^{-1} \in S$.
$g: G=V \Gamma \rightarrow V \Gamma, x \mapsto x g$.
$\mathbf{N}_{\mathrm{Aut} \Gamma}(G)=G: \operatorname{Aut}(G, S)$, where
$\operatorname{Aut}(G, S)=\left\{\sigma \in \operatorname{Aut}(G) \mid S^{\sigma}=S\right\}$.
$\Gamma=\operatorname{Cay}(G, S)$ is said to be normal if $G \triangleleft \mathrm{Aut} \Gamma$, and Γ is said to be normal edge transitive if $\mathbf{N}_{\mathrm{Aut} \Gamma}(G)$ is transitive on $E \Gamma$.

Several known results

- Two primes case: Praeger, Wang and Xu (1993), Wang and Xu (1993), Praeger and Xu (1993), Alspach and Xu (1994), Lu and Xu (2003), etc.;

Several known results

- Two primes case: Praeger, Wang and Xu (1993), Wang and Xu (1993), Praeger and Xu (1993), Alspach and Xu (1994), Lu and Xu (2003), etc.;
- Three primes case: Miller and Praeger (1994), Gamble and Praeger (2000), Iranmanesh and Praeger (2001);

Several known results

- Two primes case: Praeger, Wang and Xu (1993), Wang and Xu (1993), Praeger and Xu (1993), Alspach and Xu (1994), Lu and Xu (2003), etc.;
- Three primes case: Miller and Praeger (1994), Gamble and Praeger (2000), Iranmanesh and Praeger (2001);
- Circulant graphs: Li, Marušič and Morris (2001);

Several known results

- Two primes case: Praeger, Wang and Xu (1993), Wang and Xu (1993), Praeger and Xu (1993), Alspach and Xu (1994), Lu and Xu (2003), etc.;
- Three primes case: Miller and Praeger (1994), Gamble and Praeger (2000), Iranmanesh and Praeger (2001);
- Circulant graphs: Li, Marušič and Morris (2001);
- Primitive case: Li and Seress (2005).

Permutation groups

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Permutation groups

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)

Permutation groups

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)
Imprimitive case:

Permutation groups

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)
Imprimitive case:

- If \mathcal{B} is an X-invariant partition of Ω, then $G^{\mathcal{B}}$ contains a regular subgroup of $X^{\mathcal{B}}$.

Permutation groups

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)
Imprimitive case:

- If \mathcal{B} is an X-invariant partition of Ω, then $G^{\mathcal{B}}$ contains a regular subgroup of $X^{\mathcal{B}}$.
- X is soluble if X has soluble normal transitive subgroups.

Permutation groups

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)
Imprimitive case:

- If \mathcal{B} is an X-invariant partition of Ω, then $G^{\mathcal{B}}$ contains a regular subgroup of $X^{\mathcal{B}}$.
- X is soluble if X has soluble normal transitive subgroups.
- $X=N: Y$ for some $Y \leq X$, where $N \triangleleft X$ is semiregular such that X / N acts faithfully on the N-orbits.

Let X be a permutation group on Ω containing a regular subgroup G of square-free order.

Primitive case (Li and Seress)
Imprimitive case:

- If \mathcal{B} is an X-invariant partition of Ω, then $G^{\mathcal{B}}$ contains a regular subgroup of $X^{\mathcal{B}}$.
- X is soluble if X has soluble normal transitive subgroups.
- $X=N: Y$ for some $Y \leq X$, where $N \triangleleft X$ is semiregular such that X / N acts faithfully on the N-orbits.
- Let T be a minimal normal subgroup of X. If T transitive, then T is simple, X has a regular subgroup $C: R$ for $R \leq G$ and $C=\mathbf{C}_{X}(T)$, and $\left(T, T_{\alpha}, R, C\right)$ is explicitly known.

Quotient graphs

Quotient graphs

For $X \leq$ Aut Γ and an X-invariant partition \mathcal{B} of $V \Gamma$.

Quotient graphs

For $X \leq$ Aut Γ and an X-invariant partition \mathcal{B} of $V \Gamma$.
Quotient graph $\Gamma_{\mathcal{B}}$ is defined on \mathcal{B} with two blocks $B_{1}, B_{2} \in \mathcal{B}$ are adjacent if and only if some $\alpha_{1} \in B_{2}$ is adjacent to some $\alpha_{2} \in B_{2}$ in Γ;

Quotient graphs

For $X \leq$ Aut Γ and an X-invariant partition \mathcal{B} of $V \Gamma$.
Quotient graph $\Gamma_{\mathcal{B}}$ is defined on \mathcal{B} with two blocks $B_{1}, B_{2} \in \mathcal{B}$ are adjacent if and only if some $\alpha_{1} \in B_{2}$ is adjacent to some $\alpha_{2} \in B_{2}$ in Γ;
(m-fold) cover: Γ and $\Gamma_{\mathcal{B}}$ has the same valency.

Quotient graphs

For $X \leq$ Aut Γ and an X-invariant partition \mathcal{B} of $V \Gamma$.
Quotient graph $\Gamma_{\mathcal{B}}$ is defined on \mathcal{B} with two blocks $B_{1}, B_{2} \in \mathcal{B}$ are adjacent if and only if some $\alpha_{1} \in B_{2}$ is adjacent to some $\alpha_{2} \in B_{2}$ in Γ;
(m-fold) cover: Γ and $\Gamma_{\mathcal{B}}$ has the same valency.
If \mathcal{B} is the set of the N-orbits on $V \Gamma$ for some $N \triangleleft X$, then $\Gamma_{\mathcal{B}}$, denoted by Γ_{N}, is called a normal quotient of Γ, and Γ is called a normal cover of Γ_{N} if further Γ is a cover of Γ_{N}.

Quotient graphs

For $X \leq$ Aut Γ and an X-invariant partition \mathcal{B} of $V \Gamma$.
Quotient graph $\Gamma_{\mathcal{B}}$ is defined on \mathcal{B} with two blocks $B_{1}, B_{2} \in \mathcal{B}$ are adjacent if and only if some $\alpha_{1} \in B_{2}$ is adjacent to some $\alpha_{2} \in B_{2}$ in Γ;
(m-fold) cover: Γ and $\Gamma_{\mathcal{B}}$ has the same valency.
If \mathcal{B} is the set of the N-orbits on $V \Gamma$ for some $N \triangleleft X$, then $\Gamma_{\mathcal{B}}$, denoted by Γ_{N}, is called a normal quotient of Γ, and Γ is called a normal cover of Γ_{N} if further Γ is a cover of Γ_{N}.

Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph of square-free order. Then each quotient $\Gamma_{\mathcal{B}}$ is also a Cayley graph.

Theorem A

Let $\Gamma=\operatorname{Cay}(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \leq X \leq$ Aut Γ. Then
(1) $\Gamma=\mathrm{K}_{n}, X=\mathbb{Z}_{n}: \mathbb{Z}_{\frac{n-1}{2}}$ with n prime or X is 3 -transitive;

Theorem A

Let $\Gamma=\operatorname{Cay}(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \leq X \leq$ Aut Γ. Then
(1) $\Gamma=\mathrm{K}_{n}, X=\mathbb{Z}_{n}: \mathbb{Z}_{\frac{n-1}{2}}$ with n prime or X is 3 -transitive;
(2) $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{m}\right]$, where Σ is an edge transitive Cayley graph;

Theorem A

Let $\Gamma=\operatorname{Cay}(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \leq X \leq$ Aut Γ. Then
(1) $\Gamma=\mathrm{K}_{n}, X=\mathbb{Z}_{n}: \mathbb{Z}_{\frac{n-1}{2}}$ with n prime or X is 3 -transitive;
(2) $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{m}\right]$, where Σ is an edge transitive Cayley graph;
(3) $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{m}\right]-m \Sigma$, where Σ is an edge transitive Cayley graph;

Theorem A

Let $\Gamma=\operatorname{Cay}(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \leq X \leq$ Aut Γ. Then
(1) $\Gamma=\mathrm{K}_{n}, X=\mathbb{Z}_{n}: \mathbb{Z}_{\frac{n-1}{2}}$ with n prime or X is 3 -transitive;
(2) $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{m}\right]$, where Σ is an edge transitive Cayley graph;
(3) $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{m}\right]-m \Sigma$, where Σ is an edge transitive Cayley graph;
(4) $T=\operatorname{PSL}(2,11) \triangleleft X$, and Γ_{T} is a bipartite edge transitive Cayley graph of order $\frac{|G|}{11}$;

Theorem A

Let $\Gamma=\mathrm{Cay}(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \leq X \leq \operatorname{Aut} \Gamma$. Then
(1) $\Gamma=\mathrm{K}_{n}, X=\mathbb{Z}_{n}: \mathbb{Z}_{\frac{n-1}{2}}$ with n prime or X is 3 -transitive;
(2) $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{m}\right]$, where Σ is an edge transitive Cayley graph;
(3) $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{m}\right]-m \Sigma$, where Σ is an edge transitive Cayley graph;
(4) $T=\operatorname{PSL}(2,11) \triangleleft X$, and Γ_{T} is a bipartite edge transitive Cayley graph of order $\frac{|G|}{11}$;
(5) $T=\operatorname{PSL}(d, q) \triangleleft X$ for some $d>2$, and Γ_{T} is a bipartite edge transitive Cayley graph of order $\frac{|G|(q-1)}{q^{d}-1}$;

Theorem A

Let $\Gamma=\mathrm{Cay}(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \leq X \leq \operatorname{Aut} \Gamma$. Then
(1) $\Gamma=\mathrm{K}_{n}, X=\mathbb{Z}_{n}: \mathbb{Z}_{\frac{n-1}{2}}$ with n prime or X is 3 -transitive;
(2) $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{m}\right]$, where Σ is an edge transitive Cayley graph;
(3) $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{m}\right]-m \Sigma$, where Σ is an edge transitive Cayley graph;
(4) $T=\operatorname{PSL}(2,11) \triangleleft X$, and Γ_{T} is a bipartite edge transitive Cayley graph of order $\frac{|G|}{11}$;
(5) $T=\operatorname{PSL}(d, q) \triangleleft X$ for some $d>2$, and Γ_{T} is a bipartite edge transitive Cayley graph of order $\frac{|G|(q-1)}{q^{d}-1}$;
(6) X has a normal regular subgroup \tilde{G} with X / \tilde{G} abelian;

Theorem A

Let $\Gamma=\operatorname{Cay}(G, S)$ be an X-edge transitive Cayley graph of square-free order, $G \leq X \leq \operatorname{Aut} \Gamma$. Then
(1) $\Gamma=\mathrm{K}_{n}, X=\mathbb{Z}_{n}: \mathbb{Z}_{\frac{n-1}{2}}$ with n prime or X is 3 -transitive;
(2) $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{m}\right]$, where Σ is an edge transitive Cayley graph;
(3) $\Gamma=\Sigma\left[\overline{\mathrm{K}}_{m}\right]-m \Sigma$, where Σ is an edge transitive Cayley graph;
(4) $T=\operatorname{PSL}(2,11) \triangleleft X$, and Γ_{T} is a bipartite edge transitive Cayley graph of order $\frac{|G|}{11}$;
(5) $T=\operatorname{PSL}(d, q) \triangleleft X$ for some $d>2$, and Γ_{T} is a bipartite edge transitive Cayley graph of order $\frac{|G|(q-1)}{q^{d}-1}$;
(6) X has a normal regular subgroup \tilde{G} with X / \tilde{G} abelian;
(7) $\prod_{i} \mathbb{Z}_{p_{i}} \times \prod_{j} T_{j} \leq X \leq\left(\prod_{i} \operatorname{AGL}\left(1, p_{i}\right) \times \prod_{j} T_{j}\right) . O$ for distinct primes p_{i} and non-isomorphic non-abelian simple groups T_{j}.

Locally primitive case

A graph Γ is said to be X-locally primitive if X_{α} induces a primitive permutation group on $\Gamma(\alpha)$ for each $\alpha \in V \Gamma$.

Cor 1 Let G be a group of square-free order and Γ a connected Cayley graph of G. If Γ is X-locally primitive for $G \leq X \leq$ Aut Γ, then

Locally primitive case

A graph Γ is said to be X-locally primitive if X_{α} induces a primitive permutation group on $\Gamma(\alpha)$ for each $\alpha \in V \Gamma$.

Cor 1 Let G be a group of square-free order and Γ a connected Cayley graph of G. If Γ is X-locally primitive for $G \leq X \leq$ Aut Γ, then
(1) Γ is isomorphic to one of well-defined graphs: $\mathrm{K}_{n}, \mathrm{~K}_{n}^{(2)}, \mathrm{K}_{n, n}$, the point-block (non-)incidence graph of the symmetric design $\mathrm{S}_{2}(2,5 ; 11)$, the point-hyperplane (non-)incidence graph of the projective geometry $\mathrm{PG}(d-1, q)$; or

Locally primitive case

A graph Γ is said to be X-locally primitive if X_{α} induces a primitive permutation group on $\Gamma(\alpha)$ for each $\alpha \in V \Gamma$.

Cor 1 Let G be a group of square-free order and Γ a connected Cayley graph of G. If Γ is X-locally primitive for $G \leq X \leq$ Aut Γ, then
(1) Γ is isomorphic to one of well-defined graphs: $\mathrm{K}_{n}, \mathrm{~K}_{n}^{(2)}, \mathrm{K}_{n, n}$, the point-block (non-)incidence graph of the symmetric design $\mathrm{S}_{2}(2,5 ; 11)$, the point-hyperplane (non-)incidence graph of the projective geometry $\mathrm{PG}(d-1, q)$; or
(2) Γ has prime valency p and $X=\mathrm{D}_{2 n}: \mathbb{Z}_{p}$; or

Locally primitive case

A graph Γ is said to be X-locally primitive if X_{α} induces a primitive permutation group on $\Gamma(\alpha)$ for each $\alpha \in V \Gamma$.

Cor 1 Let G be a group of square-free order and Γ a connected Cayley graph of G. If Γ is X-locally primitive for $G \leq X \leq$ Aut Γ, then
(1) Γ is isomorphic to one of well-defined graphs: $\mathrm{K}_{n}, \mathrm{~K}_{n}^{(2)}, \mathrm{K}_{n, n}$, the point-block (non-)incidence graph of the symmetric design $\mathrm{S}_{2}(2,5 ; 11)$, the point-hyperplane (non-)incidence graph of the projective geometry $\mathrm{PG}(d-1, q)$; or
(2) Γ has prime valency p and $X=\mathrm{D}_{2 n}: \mathbb{Z}_{p}$; or
(3) $X=N: Y, Y$ is almost simple, $T:=\operatorname{soc}(Y) \triangleleft X, T$ has at most two orbits on $V \Gamma, X$ has a subgroup $C: R$ acting regularly on each of T-orbits, where $C \leq N, R \leq G$, and all possible triples (T, R, C) are known.

2-arc transitive case

A graph Γ is said to be 2 -arc transitive if some $X \leq$ Aut Γ acts transitively on the 2 -arcs of Γ.

Cor 2 Let G be a group of square-free order and Γ a connected 2-arc transitive Cayley graph of G with valency $k \geq 5$. Then one of the following holds

2-arc transitive case

A graph Γ is said to be 2 -arc transitive if some $X \leq \operatorname{Aut} \Gamma$ acts transitively on the 2 -arcs of Γ.

Cor 2 Let G be a group of square-free order and Γ a connected 2-arc transitive Cayley graph of G with valency $k \geq 5$. Then one of the following holds
(1) Γ is isomorphic to one of well-defined graphs: the graphs in Cor 1 (1), and 8 graphs constructed from $\operatorname{AutPSL}(5,2), \mathrm{A}_{7}$, $\operatorname{PSL}(2,59), \operatorname{PGL}(2,59)$ and M_{11}.

2-arc transitive case

A graph Γ is said to be 2 -arc transitive if some $X \leq$ Aut Γ acts transitively on the 2 -arcs of Γ.

Cor 2 Let G be a group of square-free order and Γ a connected 2-arc transitive Cayley graph of G with valency $k \geq 5$. Then one of the following holds
(1) Γ is isomorphic to one of well-defined graphs: the graphs in Cor 1 (1), and 8 graphs constructed from $\operatorname{AutPSL}(5,2), \mathrm{A}_{7}$, $\operatorname{PSL}(2,59), \operatorname{PGL}(2,59)$ and M_{11}.
(2) $\operatorname{val}(\Gamma)=p^{e}$ or $p^{e-1}, \operatorname{Aut} \Gamma=\left([c] \times \operatorname{PSL}\left(2, p^{e}\right)\right) . o$, where c or $\frac{c}{2}$ is a square-free divisor of $\frac{p\left(p^{e}-1\right)}{\left(2, p^{e}-1\right)}$ and $o \mid e\left(2, p^{e}-1\right)$;

2-arc transitive case

A graph Γ is said to be 2 -arc transitive if some $X \leq$ Aut Γ acts transitively on the 2 -arcs of Γ.

Cor 2 Let G be a group of square-free order and Γ a connected 2-arc transitive Cayley graph of G with valency $k \geq 5$. Then one of the following holds
(1) Γ is isomorphic to one of well-defined graphs: the graphs in Cor 1 (1), and 8 graphs constructed from $\operatorname{AutPSL}(5,2), \mathrm{A}_{7}$, $\operatorname{PSL}(2,59), \operatorname{PGL}(2,59)$ and M_{11}.
(2) $\operatorname{val}(\Gamma)=p^{e}$ or $p^{e-1}, \operatorname{Aut} \Gamma=\left([c] \times \operatorname{PSL}\left(2, p^{e}\right)\right) . o$, where c or $\frac{c}{2}$ is a square-free divisor of $\frac{p\left(p^{e}-1\right)}{\left(2, p^{e}-1\right)}$ and $o \mid e\left(2, p^{e}-1\right)$;
(3) m-fold covers of the point-hyperplane (non-)incidence graph of $\mathrm{PG}(d-1, q)$, where $m>1$ is a square-free divisor of $\frac{q-1}{(d, q-1)}$.

Theorem B

Let G be a group of square-free order and Γ be a connected edge transitive tetravalent Cayley graph of G. Then
(1) Aut $\Gamma \cong G: \mathbb{Z}_{2}^{2}$ or $G: \mathbb{Z}_{4}, \Gamma$ is arc regular and isomorphic a well-defined graph; or

Theorem B

Let G be a group of square-free order and Γ be a connected edge transitive tetravalent Cayley graph of G. Then
(1) Aut $\Gamma \cong G: \mathbb{Z}_{2}^{2}$ or $G: \mathbb{Z}_{4}, \Gamma$ is arc regular and isomorphic a well-defined graph; or
(2) Aut $\Gamma \cong G: \mathbb{Z}_{2}, \Gamma$ is edge regular and isomorphic a well-defined graph; or

Theorem B

Let G be a group of square-free order and Γ be a connected edge transitive tetravalent Cayley graph of G. Then
(1) Aut $\Gamma \cong G: \mathbb{Z}_{2}^{2}$ or $G: \mathbb{Z}_{4}, \Gamma$ is arc regular and isomorphic a well-defined graph; or
(2) Aut $\Gamma \cong G: \mathbb{Z}_{2}, \Gamma$ is edge regular and isomorphic a well-defined graph; or
(3) $\Gamma \cong \mathbf{C}_{n}\left[\overline{\mathrm{~K}}_{2}\right]$ and Aut $\Gamma \cong \mathbb{Z}_{2}^{n}: \mathrm{D}_{2 n}$; or

Theorem B

Let G be a group of square-free order and Γ be a connected edge transitive tetravalent Cayley graph of G. Then
(1) Aut $\Gamma \cong G: \mathbb{Z}_{2}^{2}$ or $G: \mathbb{Z}_{4}, \Gamma$ is arc regular and isomorphic a well-defined graph; or
(2) Aut $\Gamma \cong G: \mathbb{Z}_{2}, \Gamma$ is edge regular and isomorphic a well-defined graph; or
(3) $\Gamma \cong \mathbf{C}_{n}\left[\overline{\mathrm{~K}}_{2}\right]$ and Aut $\Gamma \cong \mathbb{Z}_{2}^{n}: \mathrm{D}_{2 n}$; or
(4) Γ is t-transitive and (Aut $\Gamma, G, \Gamma, t)$ is explicitly known.

Table 1.

Line	Aut Γ	G	Γ	t
1	$\mathrm{~S}_{5}$	\mathbb{Z}_{5}	$\mathrm{~K}_{5}$	2
2	$\mathrm{~S}_{5} \times \mathbb{Z}_{2}$	$\mathbb{Z}_{10}, \mathrm{D}_{10}$	$\mathrm{~K}_{5,5}-5 \mathrm{~K}_{2}$	2
3	$\mathrm{~S}_{5} \times \mathrm{D}_{6}$	$\mathrm{D}_{6} \times \mathbb{Z}_{5}, \mathrm{D}_{30}$	unique	2
4	$\mathrm{PGL}(2,7)$	$\mathbb{Z}_{7}: \mathbb{Z}_{3}$	$\mathrm{P}_{7,3}$	1
5	$\operatorname{PGL}(2,7) \times \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \times\left(\mathbb{Z}_{7}: \mathbb{Z}_{3}\right), \mathbb{Z}_{7}: \mathbb{Z}_{6}$	$\mathrm{P}_{7,3}^{(2)}$	1
6	$\operatorname{PGL}(2,7) \times \mathrm{D}_{2 l}$	$\mathbb{Z}_{l} \times\left(\mathbb{Z}_{7}: \mathbb{Z}_{6}\right), \mathrm{D}_{2 l} \times\left(\mathbb{Z}_{7}: \mathbb{Z}_{3}\right)$	unique	1

$3 G=\langle c\rangle \times(\langle a\rangle:\langle b\rangle) \cong \mathbb{Z}_{5} \times \mathrm{D}_{6}, S=\left\{c b, c^{2} a b,(c b)^{-1},\left(c^{2} a b\right)^{-1}\right\}$. $G=\langle a\rangle:\langle b\rangle \cong \mathrm{D}_{30}, S=\left\{a b, a^{2} b, a^{4} b, a^{8} b\right\}$.
$4 G=\left\langle a, b \mid a^{b}=a^{2}, a^{7}=b^{3}=1\right\rangle, S=\left\{b, a b, b^{-1},(a b)^{-1}\right\}$.
$5 G=\langle c\rangle \times\left\langle a, b \mid a^{b}=a^{2}, a^{7}=b^{3}=1\right\rangle, S=\left\{c b, c a b, c b^{-1}, c(a b)^{-1}\right\}$.
$G=\left\langle a, b \mid a^{b}=a^{3}, a^{7}=b^{6}=1\right\rangle, S=\left\{b, a b, b^{-1},(a b)^{-1}\right\}$.
$6 G=\langle c\rangle \times\left\langle a, b \mid a^{b}=a^{3}, a^{7}=b^{6}=1\right\rangle, S=\left\{c b, c^{-1} a b,(c b)^{-1},\left(c^{-1} a b\right)^{-1}\right\}$. $G=\left\langle a, b \mid a^{b}=a^{r}, a^{7 l}=b^{6}=1\right\rangle, S=\left\{b, a b, b^{-1},(a b)^{-1}\right\}$.

Table 1.

Line	Aut Γ	G	Γ	s
1	$\operatorname{PSL}(3,2): \mathbb{Z}_{2}$	D_{14}	$\mathrm{~K}_{7,7}-\operatorname{PG}(2,2)$	2
2	$\operatorname{PSL}(3,3): \mathbb{Z}_{2}$	D_{26}	$\operatorname{PG}(2,3)$	4
3	$\operatorname{PGL}(2,11)$	$\mathbb{Z}_{11}: \mathbb{Z}_{5}$	$\mathrm{P}_{11,5}$	2
4	$\operatorname{PGL}(2,11) \times \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \times\left(\mathbb{Z}_{11}: \mathbb{Z}_{5}\right), \mathbb{Z}_{11}: \mathbb{Z}_{10}$	$\mathrm{P}_{11,5}^{(2)}$	2
5	$\left(\operatorname{PSL}(2,11) \times \mathbb{Z}_{3}\right): \mathbb{Z}_{2}$	$\mathbb{Z}_{3} \times\left(\mathbb{Z}_{11}: \mathbb{Z}_{5}\right)$	unique	2
6	$\mathbb{Z}_{2} \times\left(\operatorname{PSL}(2,11) \times\left(\mathbb{Z}_{3}\right): \mathbb{Z}_{2}\right)$	$\mathbb{Z}_{33}: \mathbb{Z}_{10}, \mathbb{Z}_{6} \times\left(\mathbb{Z}_{11}: \mathbb{Z}_{5}\right)$	$\Gamma^{(2)}$	2
7	$\operatorname{PSL}(2,23)$	$\mathbb{Z}_{23}: \mathbb{Z}_{11}$	$\mathrm{P}_{23,11}$	2
8	$\operatorname{PSL}(2,23) \times \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \times\left(\mathbb{Z}_{23}: \mathbb{Z}_{11}\right)$	$\mathrm{P}_{23,11}^{(2)}$	2
9	$\operatorname{PSL}(2,23) \times \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \times\left(\mathbb{Z}_{23}: \mathbb{Z}_{11}\right)$	two	2
10	$\operatorname{PSL}(2,23) \times \mathrm{D}_{6}$	$\mathrm{D}_{6} \times\left(\mathbb{Z}_{23}: \mathbb{Z}_{11}\right)$	unique	2

line $1 \operatorname{Cay}\left(G,\left\{b, a b, a^{2} b, a^{4} b\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \cong \mathrm{D}_{14}$.
line $2 \operatorname{Cay}\left(G,\left\{b, a b, a^{3} b, a^{9} b\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \cong \mathrm{D}_{26}$.
line $3 \operatorname{Cay}\left(G,\left\{a, a^{-1}, b^{2}, b^{3}\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \cong \mathbb{Z}_{11}: \mathbb{Z}_{5}$ with $a^{b}=a^{3}$.
line $4 \operatorname{Cay}\left(G,\left\{a b^{5}, a^{-1} b^{5}, b, b^{-1}\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \cong \mathbb{Z}_{11}: \mathbb{Z}_{10}$ with $a^{b}=a^{2}$. $\operatorname{Cay}\left(G,\left\{a c, a^{-1} c, b^{2} c, b^{3} c\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \times\langle c\rangle \cong \mathbb{Z}_{11}: \mathbb{Z}_{5} \times \mathbb{Z}_{2}$ with $a^{b}=a^{3}$.
line $5 \operatorname{Cay}\left(G,\left\{a c, a^{-1} c^{-1}, b^{2}, b^{3}\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \times\langle c\rangle \cong \mathbb{Z}_{11}: \mathbb{Z}_{5} \times \mathbb{Z}_{3}$ with $a^{b}=a^{3}$.
line $6 \operatorname{Cay}\left(G,\left\{a c, a^{10} c^{5}, b^{2} c^{3}, b^{3} c^{3}\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \times\langle c\rangle \cong \mathbb{Z}_{11}: \mathbb{Z}_{5} \times \mathbb{Z}_{6}$ with $a^{b}=a^{3}$;
$\operatorname{Cay}\left(G,\left\{a b^{5}, a^{-1} b^{5}, b, b^{9}\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \cong \mathbb{Z}_{33}: \mathbb{Z}_{10}$ with $a^{b}=a^{2}$.
line $7 \operatorname{Cay}\left(G,\left\{a b,(a b)^{-1}, b^{4}, b^{7}\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \cong \mathbb{Z}_{23}: \mathbb{Z}_{11}$ with $a^{b}=a^{2}$.
line $8 \operatorname{Cay}\left(G,\left\{a b c,(a b)^{-1} c, b^{4} c, b^{7} c\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \times\langle c\rangle \cong \mathbb{Z}_{23}: \mathbb{Z}_{11} \times \mathbb{Z}_{2}$ with $a^{b}=a^{2}$.
line $9 \operatorname{Cay}\left(G,\left\{a b c,(a b)^{-1} c, b^{4}, b^{7}\right\}\right)$ and $\operatorname{Cay}\left(G,\left\{a b,(a b)^{-1}, b^{4} c, b^{7} c\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \times\langle c\rangle \cong \mathbb{Z}_{23}: \mathbb{Z}_{11} \times \mathbb{Z}_{2}$ with $a^{b}=a^{2}$.
line $10 \operatorname{Cay}\left(G,\left\{a b,(a b)^{-1}, a^{23} b^{4},\left(a^{23} b^{4}\right)^{-1}\right\}\right)$ for $G=\langle a\rangle:\langle b\rangle \cong \mathbb{Z}_{69}: \mathbb{Z}_{22}$ with $a^{b}=a^{2}$.

Thank You!

