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Cayley graphΓ = Cay(G,S): V Γ = G andS ⊂ G such that

x, y ∈ V Γ are adjacent if and only ifyx−1 ∈ S.

g : G = V Γ → V Γ , x 7→ xg.

NAutΓ (G) = G:Aut(G,S), where

Aut(G,S) = {σ ∈ Aut(G) | Sσ = S}.

Γ = Cay(G,S) is said to benormalif G� AutΓ , andΓ is said

to benormal edge transitiveif NAutΓ (G) is transitive onEΓ .
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Permutation groups

LetX be a permutation group onΩ containing a regular

subgroupG of square-free order.

Primitive case (Li and Seress)

Imprimitive case:

• If B is anX-invariant partition ofΩ , thenGB contains a

regular subgroup ofXB.

• X is soluble ifX has soluble normal transitive subgroups.

• X = N :Y for someY ≤ X, whereN �X is semiregular

such thatX/N acts faithfully on theN -orbits.

• Let T be a minimal normal subgroup ofX. If T transitive,
thenT is simple,X has a regular subgroupC:R for R ≤ G

andC = CX(T ), and(T, Tα, R, C) is explicitly known.
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B1, B2 ∈ B are adjacent if and only if someα1 ∈ B2 is

adjacent to someα2 ∈ B2 in Γ ;

(m-fold) cover: Γ andΓB has the same valency.

If B is the set of theN -orbits onV Γ for someN �X, then

ΓB, denoted byΓN , is called anormal quotientof Γ , andΓ

is called anormal coverof ΓN if further Γ is a cover ofΓN .

Let Γ = Cay(G,S) be a Cayley graph of square-free order.
Then each quotientΓB is also a Cayley graph.
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(3) Γ = Σ [Km]−mΣ, whereΣ is an edge transitive Cayley graph;

(4) T = PSL(2, 11)�X, andΓT is a bipartite edge transitive

Cayley graph of order|G|
11 ;

(5) T = PSL(d, q)�X for somed > 2, andΓT is a bipartite edge

transitive Cayley graph of order|G|(q−1)
qd−1

;

(6) X has a normal regular subgroup̃G with X/G̃ abelian;

(7)
∏

i Zpi×
∏

j Tj ≤ X ≤ (
∏

iAGL(1, pi)×
∏

j Tj).O for distinct

primespi and non-isomorphic non-abelian simple groupsTj .
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the point-block (non-)incidence graph of the symmetric design

S2(2, 5; 11), the point-hyperplane (non-)incidence graph of the

projective geometryPG(d−1, q); or

(2) Γ has prime valencyp andX = D2n:Zp; or

(3) X = N :Y , Y is almost simple,T := soc(Y )�X, T has at most

two orbits onV Γ , X has a subgroupC:R acting regularly on

each ofT -orbits, whereC ≤ N , R ≤ G, and all possible triples

(T,R,C) are known.
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2

is a square-free divisor ofp(p
e−1)
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Theorem B

LetG be a group of square-free order andΓ be a connected edge

transitive tetravalent Cayley graph ofG. Then

(1) AutΓ ∼= G:Z2
2 orG:Z4, Γ is arc regular and isomorphic a

well-defined graph; or

(2) AutΓ ∼= G:Z2, Γ is edge regular and isomorphic a

well-defined graph; or

(3) Γ ∼= Cn[K2] andAutΓ ∼= Z
n
2 :D2n; or

(4) Γ is t-transitive and(AutΓ , G,Γ , t) is explicitly known.

– p. 9/13



Table 1.

Line AutΓ G Γ t

1 S5 Z5 K5 2

2 S5×Z2 Z10,D10 K5,5 − 5K2 2

3 S5×D6 D6×Z5,D30 unique 2

4 PGL(2, 7) Z7:Z3 P7,3 1

5 PGL(2, 7)×Z2 Z2×(Z7:Z3),Z7:Z6 P
(2)
7,3 1

6 PGL(2, 7)×D2l Zl×(Z7:Z6),D2l×(Z7:Z3) unique 1

3 G = 〈c〉×(〈a〉:〈b〉) ∼= Z5×D6, S = {cb, c2ab, (cb)−1, (c2ab)−1}.

G = 〈a〉:〈b〉 ∼= D30, S = {ab, a2b, a4b, a8b}.

4 G = 〈a, b | ab = a2, a7 = b3 = 1〉, S = {b, ab, b−1, (ab)−1}.

5 G = 〈c〉×〈a, b | ab = a2, a7 = b3 = 1〉, S = {cb, cab, cb−1, c(ab)−1}.

G = 〈a, b | ab = a3, a7 = b6 = 1〉, S = {b, ab, b−1, (ab)−1}.

6 G = 〈c〉×〈a, b | ab = a3, a7 = b6 = 1〉, S = {cb, c−1ab, (cb)−1, (c−1ab)−1}.

G = 〈a, b | ab = ar, a7l = b6 = 1〉, S = {b, ab, b−1, (ab)−1}.
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Table 1.

Line AutΓ G Γ s

1 PSL(3, 2):Z2 D14 K7,7 − PG(2, 2) 2

2 PSL(3, 3):Z2 D26 PG(2, 3) 4

3 PGL(2, 11) Z11:Z5 P11,5 2

4 PGL(2, 11)×Z2 Z2×(Z11:Z5),Z11:Z10 P
(2)
11,5 2

5 (PSL(2, 11)×Z3):Z2 Z3×(Z11:Z5) unique 2

6 Z2×(PSL(2, 11)×(Z3):Z2) Z33:Z10,Z6×(Z11:Z5) Γ
(2) 2

7 PSL(2, 23) Z23:Z11 P23,11 2

8 PSL(2, 23)× Z2 Z2×(Z23:Z11) P
(2)
23,11 2

9 PSL(2, 23)× Z2 Z2×(Z23:Z11) two 2

10 PSL(2, 23)×D6 D6×(Z23:Z11) unique 2
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line 1 Cay(G, {b, ab, a2b, a4b}) for G = 〈a〉:〈b〉 ∼= D14.

line 2 Cay(G, {b, ab, a3b, a9b}) for G = 〈a〉:〈b〉 ∼= D26.

line 3 Cay(G, {a, a−1, b2, b3}) for G = 〈a〉:〈b〉 ∼= Z11:Z5 with ab = a3.

line 4 Cay(G, {ab5, a−1b5, b, b−1}) for G = 〈a〉:〈b〉 ∼= Z11:Z10 with ab = a2.

Cay(G, {ac, a−1c, b2c, b3c}) for G = 〈a〉:〈b〉×〈c〉 ∼= Z11:Z5×Z2 with ab = a3.

line 5 Cay(G, {ac, a−1c−1, b2, b3}) for G = 〈a〉:〈b〉×〈c〉 ∼= Z11:Z5×Z3 with ab = a3.

line 6 Cay(G, {ac, a10c5, b2c3, b3c3}) for G = 〈a〉:〈b〉×〈c〉 ∼= Z11:Z5×Z6 with ab = a3;

Cay(G, {ab5, a−1b5, b, b9}) for G = 〈a〉:〈b〉 ∼= Z33:Z10 with ab = a2.

line 7 Cay(G, {ab, (ab)−1, b4, b7}) for G = 〈a〉:〈b〉 ∼= Z23:Z11 with ab = a2.

line 8 Cay(G, {abc, (ab)−1c, b4c, b7c}) for G = 〈a〉:〈b〉×〈c〉 ∼= Z23:Z11×Z2 with

ab = a2.

line 9 Cay(G, {abc, (ab)−1c, b4, b7}) andCay(G, {ab, (ab)−1, b4c, b7c}) for

G = 〈a〉:〈b〉×〈c〉 ∼= Z23:Z11×Z2 with ab = a2.

line 10 Cay(G, {ab, (ab)−1, a23b4, (a23b4)−1}) for G = 〈a〉:〈b〉 ∼= Z69:Z22 with ab = a2.
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Thank You!
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