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Edge-transitive graphs

We consider undirected graphs.

A graph Γ = (V ,E) is called G-edge-transitive if G ≤ AutΓ is
transitive on E .

Lemma.
If Γ = (V ,E) is G-edge-transitive, then one of the following
holds:

(a) Γ is G-arc-transitive;
(b) G is trans on both V and E, but intrans on the arc set;
(c) G is intransitive on V ; so Γ is bipartite.

Remarks:
Graphs in item (b) are called G-half-arc-transitive;
Regular graphs in item (c) are G-semisymmetric.
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Quotient

Let Γ = (V ,E) be G-edge-transitive.

We consider block quotients and normal quotients.

Let B be a non-trivial G-invariant partition of V . Then the
corresponding block quotient is denoted by ΓB. If B is the set of
a normal subgroup N C G, then denote ΓB by ΓN .

Observation
If Γ is edge-transitive, then so is ΓB.
If Γ is arc-transitive, then so is ΓB.



Covers

Definition
The graph Γ is a cover of ΓB if, for two adjacent blocks B,C ∈ B,
the induced subgraph [B,C] is a perfect matching.

‘Cover’ would be the most important relation between Γ and ΓB.

Observation
If Γ is a cover of ΓB, then Γ and ΓB have the same valency.

Naturally, we would ask

Question
If Γ and ΓB have the same valency, is Γ a cover of ΓB?
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Covers

The answer is positive for some special cases
If Γ and ΓN have the same valency, then Γ is a cover of ΓN .

If Γ is G-locally-primitive, and Γ and ΓB have the same
valency, then Γ is a cover of ΓB.

A graph Γ is G-locally-primitive if G ≤ AutΓ is such that Gv acts
primitively on Γ(v) for each vertex v .

However, generally,

The answer is negative!
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Example

Construction (Li-Praeger-Zhou)
Let G = PSL(2,p), where p ≡ 1 (mod 16). Let H be a Sylow
2-subgroup of G.

Then H = 〈a〉:〈b〉 ∼= D16, 〈a4,b〉 ∼= Z2
2, and NG(〈a4,b〉) = S4.

Some involution g ∈ NG(〈a4,b〉) interchanges a4 and b.

Let L = 〈a4,ba〉 ∼= Z2
2, and define

Σ = Cos(G,H,HgH), Γ = Cos(G,L,LgL).

Theorem.
Both Σ and Γ are G-symmetric of valency 4,
Σ is a block quotient of Γ, and
Γ is not a cover of Σ.
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Normal covers

If Γ is a cover of ΓN , then Γ is called a normal cover of ΓN , or a
regular cover.

Observation
If Γ = (V ,E) is a cover of ΓN , then N is semiregular on V and
G/N is faithful on V ΓN .

Conversely,
if N is semiregular on V and G/N is faithful on V ΓN , is Γ a
cover of ΓN?

The answer is negative!
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Example*

Let R = 〈a1, . . . ,a6〉 ∼= Z6
4, and let S = {ai ,a−1

i | 1 ≤ i ≤ 6}.

Then Aut(R) has a subgroup H ∼= A5 which acts transitively on
S with a block system {{ai ,a−1

i } | 1 ≤ i ≤ 6} and the stabiliser
of the block {a6,a−1

6 } equals 〈x , y〉 ∼= D10, where

x = (a1a2a3a4a5)(a−1
1 a−1

2 a−1
3 a−1

4 a−1
5 ), and

y = (a1a−1
1 )(a2a−1

5 )(a3a−1
4 )(a−1

2 a5)(a−1
3 a4)(a6a−1

6 ).

Let G = R̂:H, and Γ = Cay(R,S). Then Γ is symmetric of
valency 12 as H ≤ Aut(R,S) is trans on S.



The group G has a normal subgroup N = 〈â2
i | 1 ≤ i ≤ 6〉 ∼= Z6

2.

The quotient graph ΓN is a Cayley graph of Z6
2 of valency 6.

Furthermore, N is the kernel of G acting on V ΓN and is
semiregular on the vertex set R.

However, Γ is not a cover of ΓN .



Cayley graphs

The class of Cayley graphs is not closed under normal quotient.

Proposition.
Every vertex-trans graph is a normal quotient of a Cayley graph.

A Cayley graph Γ = Cay(G,S) is called normal edge-transitive if
NAutΓ(Ĝ) is transitive on the edge set of Γ. Since

NAutΓ(Ĝ) = Ĝ:Aut(G,S),

Aut(G,S) is transitive on {{s, s−1} | s ∈ S}.

Theorem.
Every (connected) vertex- and edge-transitive graph has a
normal cover which is a (connected) normal edge-transitive
Cayley graph.
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NAutΓ(Ĝ) is transitive on the edge set of Γ. Since

NAutΓ(Ĝ) = Ĝ:Aut(G,S),

Aut(G,S) is transitive on {{s, s−1} | s ∈ S}.

Theorem.
Every (connected) vertex- and edge-transitive graph has a
normal cover which is a (connected) normal edge-transitive
Cayley graph.



Classes of graphs closed under normal quotients

{ s-arc-transitive graphs}, with s ≥ 1; (Praeger 1990’s)

{locally s-arc-transitive graphs}, with s ≥ 1;
{locally-primitive graphs}; (Giudici-Li-Praeger, 2002-2006)

{vertex-transitive locally-quasiprimitive graphs};
(Li-Praeger-Venkatesh-Zhou, 2002)

{2-path-transitive graphs}; (Hua Zhang’s PhD project)

A graph Γ is G-locally-quasiprimitive if G ≤ AutΓ is such that Gv
acts quasiprimitively on Γ(v) for each vertex v , ie, each normal
subgroup of Gv is trivial or trans on Γ(v).
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More graphs

{edge-transitive graphs of odd order}; (Jingjian Li’s PhD
project)

{edge-transitive graphs of square-free order}; (Gaixia Wang’
PhD project)

{metacirculants}, (Jiangmin Pan’s PhD project);

{underlying graphs of regular maps}, (Li-Siran).

{vertex-, edge-trans strongly regular graphs},
(Morris-Praeger-Spiga).

{locally distance-transitive graphs}, (see next talk by Giudici).



O’Nan-Scott type theorem

Theorem (Praeger 1993)
Let G ≤ Sym(V ) be quasiprimitive. Then G has ≤ 2 minimal
normal subgroups,

and one of the following holds:
HA soc(G) is an abelian minimal normal subgroup, and

G ≤ AGL(d ,p);
HS G has two minimal normal subgroups, which are

nonabelian simple;
HC G has two minimal normal subgroups, which are

nonabelian non-simple;
AS G is almost simple;
SD N = soc(G) = Sd is minimal normal, and Nv ∼= S;
CD N = soc(G) = Sd is minimal normal, and Nv ∼= Se 6= S;
TW soc(G) is minimal normal and regular;
PA soc(G) is minimal normal, non-simple, and irregular.
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Thin edge-transitive graphs

We next consider locally-quasiprimitive graphs. We first
exclude a trivial case.

A graph Γ is thin if it has a vertex that is adjacent to at most 2
vertices.

Proposition.
A thin edge-transitive graph is one of the following graphs:

a star;
a cycle;
the subdivision of a thick arc-transitive graph.

We only need to consider thick graphs.
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Locally-quasiprimitive graphs

Lemma.
If Γ is thick and G-locally-quasiprimitive, then a normal quotient
ΓN is (G/N)-locally-quasiprimitive, and either

ΓN is a star, or
ΓN is thick.

Remarks:
Cycles are not normal quotients of thick
locally-quasiprimitive graphs.
For locally-quasiprimitive graphs, Γ is not necessarily a
cover of ΓN , even if ΓN is thick.
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Example*

Let R = 〈a1, . . . ,a6〉 ∼= Z6
4, and let S = {ai ,a−1

i | 1 ≤ i ≤ 6}. Let
Γ = Cay(R,S).

Then AutΓ has a subgp G = R:A5 acting arc-transitively on Γ.
As Gv ∼= A5 is simple, Γ is G-locally-qp of valency 12.

As shown before, for the normal subgroup

N = 〈â2
i | 1 ≤ i ≤ 6〉 ∼= Z6

2,

ΓN is of valency 6; in particular, Γ is not a cover of ΓN .



Basic objects

Definition
A G-locally-quasiprimitive graph Γ is basic if

it is thick, and
any normal quotient is one of the graphs: K1, K2, a star.

Lemma
If Γ = (V ,E) is basic G-locally-quasiprimitive and G is transitive
on V , then G is quasiprimitive or bi-quasiprimitive on V .

(G being bi-quasiprimitive on V means that every minimal
normal subgroup of G has exactly two orbits on V .)
Praeger (2003) gave a description of bi-quasiprimitive groups.
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Basic locally-quasiprimitive graphs

Theorem.
Let Γ = (V ,E) be a basic G-locally-quasiprimitive graph such
that G is intrans on V . Then one of the following holds:

(i) Γ = Km,n, and G = Gv Gw , where (v ,w) is an edge;
(ii) G is faithful and quasiprimitive on both biparts of type
{X,Y}, where either X = Y or {X,Y} = {SD,CD}, {SD,PA}
or {CD,PA}. Further, Γ is not locally-primitive for
{X,Y} = {SD,CD}; Γ is not locally 2-arc-transitive for
{X,Y} = {CD,PA}.

(iii) G is faithful on both biparts and quasiprimitive on exactly
one of them, of which the quasiprimitive type is HA, HS,
HC, AS, PA or TW. Moreover, HC type is not locally
2-arc-transitive.

Examples exist for each of these cases.
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Problems

This theorem suggests us to study the following problems.

Problem A
Characterise the graphs for each case appeared in the
theorem.

Problem B
Find normal covers or multi-covers of basic
locally-quasiprimitive graphs.



Dual actions

We start with an example.

Let T be a simple group, and Γ = Cay(T ,S) connected, cubic
and symmetric. Let G = AutΓ. Then G = TGv , and T ∩Gv = 1.

Now the vertex set V of Γ is T , and also V can be identified
with [G : Gv ] such that G acts on

V = [G : Gv ]

by right multiplication.

If T C G, then Γ is a normal Cayley graph. Otherwise, T is
core-free in G, and so G has another coset action on

Ω = [G : T ],

called a dual action of G on [G : Gv ].

Note that the stabiliser Gv is transitive on [G : T ].
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By Tutte’s theorem, Gv = Z3, S3, D12, S4 or S4 × S2. Thus, the
size of [G : T ] divides 48, and G ≤ S48.

Proposition.
If Γ is not a normal Cayley graph, then T is one of the following
groups:

A5, PSL(2,11), M11, A11, M23, A23, or A47.

Shangjin Xu (PhD project, 2006) completed this work. In
particular, for T = A47, two 5-arc-transitive graphs are found.



Constructing non-Cayley graphs

Let T be simple, and T = 〈a,b〉 with o(a) = 3, o(b) = 2. Let

Γ = Cos(T , 〈a〉, 〈a〉b〈a〉).

Then G := AutΓ = TGv such that |Gv | divides 48.

Suppose that Γ is a Cayley graph of R. Then G = RGv . Let C
be the core of R in G. Then G = R Gv such that R is core-free
in G and Gv ∼= Gv . It follows that T ∼= T ≤ G ≤ S48.

Proposition.
If T 6< S48, then Γ is not a Cayley graph.

Theorem (Liebeck-Shalev)

Except for Sz(q), Sp(4,2f ) and finitely many exceptions, every
simple group is generated by an element of order 3 and an
involution.
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Γ = Cos(T , 〈a〉, 〈a〉b〈a〉).
Then G := AutΓ = TGv such that |Gv | divides 48.

Suppose that Γ is a Cayley graph of R. Then G = RGv . Let C
be the core of R in G. Then G = R Gv such that R is core-free
in G and Gv ∼= Gv . It follows that T ∼= T ≤ G ≤ S48.
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Vertex-trans graphs and Cayley graphs

Conjecture (McKay-Praeger 1990’s)
Almost all vertex-transitive graphs are Cayley graphs.

However, we have

Theorem
Almost all 3-arc-trans graphs are not Cayley graphs.

Let Γ = (V ,E) be a connected (G,3)-arc-transitive graph of
valency k . We need a big theorem.

Theorem (Weiss, Trofimov)
The stabiliser Gv has order |Gv | upper-bounded by a function
f (k).
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Suppose that Γ is a Cayley graph of R. Then G = RGv .

Let C be the core of R in G. Then C has ≥ 3 orbits on V .

Let R = R/C, and G = G/C.

Then R is core-free in G, G = R Gv , and Gv ∼= Gv .

Thus, G ≤ Sym(Ω), where Ω = [G : R].

Now, Gv is transitive on Ω, and so |Ω| divides |Gv |. In particular,

|Ω| ≤ f (k), and G ≤ Sym(f (k)).

So for each k , only finitely many basic 3-arc-transitive graphs of
valency k and their covers are Cayley graphs.


