Finite Edge-transitive Graphs

Cai-Heng Li

University of Western Australia Australia We consider undirected graphs.

A graph $\Gamma = (V, E)$ is called *G*-edge-transitive if $G \leq \text{Aut}\Gamma$ is transitive on *E*.

We consider undirected graphs.

A graph $\Gamma = (V, E)$ is called *G*-edge-transitive if $G \leq \text{Aut}\Gamma$ is transitive on *E*.

Lemma.

If $\Gamma = (V, E)$ is G-edge-transitive, then one of the following holds:

- (a) Γ is G-arc-transitive;
- (b) G is trans on both V and E, but intrans on the arc set;
- (c) G is intransitive on V; so Γ is bipartite.

We consider undirected graphs.

A graph $\Gamma = (V, E)$ is called *G*-edge-transitive if $G \leq \text{Aut}\Gamma$ is transitive on *E*.

Lemma.

If $\Gamma = (V, E)$ is G-edge-transitive, then one of the following holds:

- (a) Γ is G-arc-transitive;
- (b) G is trans on both V and E, but intrans on the arc set;
- (c) G is intransitive on V; so Γ is bipartite.

Remarks:

- Graphs in item (b) are called G-half-arc-transitive;
- Regular graphs in item (c) are *G*-semisymmetric.

Let $\Gamma = (V, E)$ be *G*-edge-transitive.

We consider block quotients and normal quotients.

Let \mathcal{B} be a non-trivial G-invariant partition of V. Then the corresponding block quotient is denoted by $\Gamma_{\mathcal{B}}$. If \mathcal{B} is the set of a normal subgroup $N \triangleleft G$, then denote $\Gamma_{\mathcal{B}}$ by Γ_N .

Observation

- If Γ is edge-transitive, then so is $\Gamma_{\mathcal{B}}$.
- If Γ is arc-transitive, then so is $\Gamma_{\mathcal{B}}$.

The graph Γ is a cover of $\Gamma_{\mathcal{B}}$ if, for two adjacent blocks $B, C \in \mathcal{B}$, the induced subgraph [B, C] is a perfect matching.

'Cover' would be the most important relation between Γ and $\Gamma_{\mathcal{B}}$.

The graph Γ is a cover of $\Gamma_{\mathcal{B}}$ if, for two adjacent blocks $B, C \in \mathcal{B}$, the induced subgraph [B, C] is a perfect matching.

'Cover' would be the most important relation between Γ and $\Gamma_{\mathcal{B}}$.

Observation

If Γ is a cover of $\Gamma_{\mathcal{B}}$, then Γ and $\Gamma_{\mathcal{B}}$ have the same valency.

The graph Γ is a cover of $\Gamma_{\mathcal{B}}$ if, for two adjacent blocks $B, C \in \mathcal{B}$, the induced subgraph [B, C] is a perfect matching.

'Cover' would be the most important relation between Γ and $\Gamma_{\mathcal{B}}$.

Observation

If Γ is a cover of $\Gamma_{\mathcal{B}}$, then Γ and $\Gamma_{\mathcal{B}}$ have the same valency.

Naturally, we would ask

Question

If Γ and $\Gamma_{\mathcal{B}}$ have the same valency, is Γ a cover of $\Gamma_{\mathcal{B}}$?

The answer is positive for some special cases

- If Γ and Γ_N have the same valency, then Γ is a cover of Γ_N .
- If Γ is G-locally-primitive, and Γ and Γ_B have the same valency, then Γ is a cover of Γ_B.

A graph Γ is *G*-locally-primitive if $G \leq \operatorname{Aut}\Gamma$ is such that G_v acts primitively on $\Gamma(v)$ for each vertex v.

The answer is positive for some special cases

- If Γ and Γ_N have the same valency, then Γ is a cover of Γ_N .
- If Γ is G-locally-primitive, and Γ and Γ_B have the same valency, then Γ is a cover of Γ_B.

A graph Γ is *G*-locally-primitive if $G \leq \text{Aut}\Gamma$ is such that G_v acts primitively on $\Gamma(v)$ for each vertex v.

However, generally,

The answer is negative!

Example

Construction (Li-Praeger-Zhou)

Let G = PSL(2, p), where $p \equiv 1 \pmod{16}$. Let *H* be a Sylow 2-subgroup of *G*.

Then $H = \langle a \rangle : \langle b \rangle \cong D_{16}, \, \langle a^4, b \rangle \cong \mathbb{Z}_2^2$, and $N_G(\langle a^4, b \rangle) = S_4$.

Some involution $g \in \mathbf{N}_G(\langle a^4, b \rangle)$ interchanges a^4 and b.

Let $L = \langle a^4, ba \rangle \cong \mathbb{Z}_2^2$, and define

 $\Sigma = Cos(G, H, HgH), \ \ \Gamma = Cos(G, L, LgL).$

Example

Construction (Li-Praeger-Zhou)

Let G = PSL(2, p), where $p \equiv 1 \pmod{16}$. Let *H* be a Sylow 2-subgroup of *G*.

Then $H = \langle a \rangle : \langle b \rangle \cong D_{16}$, $\langle a^4, b \rangle \cong \mathbb{Z}_2^2$, and $N_G(\langle a^4, b \rangle) = S_4$.

Some involution $g \in N_G(\langle a^4, b \rangle)$ interchanges a^4 and b.

Let $L = \langle a^4, ba \rangle \cong \mathbb{Z}_2^2$, and define

 $\Sigma = Cos(G, H, HgH), \ \ \Gamma = Cos(G, L, LgL).$

Theorem.

- Both Σ and Γ are G-symmetric of valency 4,
- Σ is a block quotient of Γ, and
- Γ is not a cover of Σ .

If Γ is a cover of Γ_N , then Γ is called a normal cover of Γ_N , or a regular cover.

Observation

If $\Gamma = (V, E)$ is a cover of Γ_N , then *N* is semiregular on *V* and G/N is faithful on $V\Gamma_N$.

If Γ is a cover of Γ_N , then Γ is called a normal cover of Γ_N , or a regular cover.

Observation

If $\Gamma = (V, E)$ is a cover of Γ_N , then *N* is semiregular on *V* and G/N is faithful on $V\Gamma_N$.

Conversely,

if N is semiregular on V and G/N is faithful on $V\Gamma_N$, is Γ a cover of Γ_N ?

If Γ is a cover of Γ_N , then Γ is called a normal cover of Γ_N , or a regular cover.

Observation

If $\Gamma = (V, E)$ is a cover of Γ_N , then *N* is semiregular on *V* and G/N is faithful on $V\Gamma_N$.

Conversely,

if N is semiregular on V and G/N is faithful on $V\Gamma_N$, is Γ a cover of Γ_N ?

The answer is negative!

Let
$$R = \langle a_1, \ldots, a_6 \rangle \cong \mathbb{Z}_4^6$$
, and let $S = \{a_i, a_i^{-1} \mid 1 \le i \le 6\}$.

Then Aut(*R*) has a subgroup $H \cong A_5$ which acts transitively on *S* with a block system $\{\{a_i, a_i^{-1}\} \mid 1 \le i \le 6\}$ and the stabiliser of the block $\{a_6, a_6^{-1}\}$ equals $\langle x, y \rangle \cong D_{10}$, where

$$x = (a_1 a_2 a_3 a_4 a_5)(a_1^{-1} a_2^{-1} a_3^{-1} a_4^{-1} a_5^{-1}), \text{ and } y = (a_1 a_1^{-1})(a_2 a_5^{-1})(a_3 a_4^{-1})(a_2^{-1} a_5)(a_3^{-1} a_4)(a_6 a_6^{-1}).$$

Let $G = \hat{R}$: H, and $\Gamma = \text{Cay}(R, S)$. Then Γ is symmetric of valency 12 as $H \leq \text{Aut}(R, S)$ is trans on S.

The group *G* has a normal subgroup $N = \langle \hat{a}_i^2 | 1 \le i \le 6 \rangle \cong \mathbb{Z}_2^6$. The quotient graph Γ_N is a Cayley graph of \mathbb{Z}_2^6 of valency 6. Furthermore, *N* is the kernel of *G* acting on $V\Gamma_N$ and is semiregular on the vertex set *R*.

However, Γ is not a cover of Γ_N .

Cayley graphs

The class of Cayley graphs is not closed under normal quotient.

Cayley graphs

The class of Cayley graphs is not closed under normal quotient.

Proposition.

Every vertex-trans graph is a normal quotient of a Cayley graph.

The class of Cayley graphs is not closed under normal quotient.

Proposition.

Every vertex-trans graph is a normal quotient of a Cayley graph.

A Cayley graph $\Gamma = Cay(G, S)$ is called normal edge-transitive if $\mathbf{N}_{Aut\Gamma}(\hat{G})$ is transitive on the edge set of Γ . Since

$$\mathbf{N}_{\mathrm{Aut}\Gamma}(\hat{G}) = \hat{G}: \mathrm{Aut}(G, S),$$

Aut(G, S) is transitive on {{ s, s^{-1} } | $s \in S$ }.

The class of Cayley graphs is not closed under normal quotient.

Proposition.

Every vertex-trans graph is a normal quotient of a Cayley graph.

A Cayley graph $\Gamma = \text{Cay}(G, S)$ is called normal edge-transitive if $\mathbf{N}_{\text{Aut}\Gamma}(\hat{G})$ is transitive on the edge set of Γ . Since $\mathbf{N}_{\text{Aut}\Gamma}(\hat{G}) = \hat{G}:\text{Aut}(G, S),$

Aut(G, S) is transitive on {{ s, s^{-1} } | $s \in S$ }.

Theorem.

Every (connected) vertex- and edge-transitive graph has a normal cover which is a (connected) normal edge-transitive Cayley graph.

Classes of graphs closed under normal quotients

- { *s*-arc-transitive graphs}, with $s \ge 1$; (Praeger 1990's)
- {locally *s*-arc-transitive graphs}, with $s \ge 1$; {locally-primitive graphs}; (Giudici-Li-Praeger, 2002-2006)
- {vertex-transitive locally-quasiprimitive graphs}; (Li-Praeger-Venkatesh-Zhou, 2002)
- {2-path-transitive graphs}; (Hua Zhang's PhD project)

A graph Γ is *G*-locally-quasiprimitive if $G \le \operatorname{Aut}\Gamma$ is such that G_v acts quasiprimitively on $\Gamma(v)$ for each vertex v, ie, each normal subgroup of G_v is trivial or trans on $\Gamma(v)$.

{edge-transitive graphs of odd order}; (Jingjian Li's PhD project)

{edge-transitive graphs of square-free order}; (Gaixia Wang' PhD project)

{metacirculants}, (Jiangmin Pan's PhD project);

{underlying graphs of regular maps}, (Li-Siran).

{vertex-, edge-trans strongly regular graphs}, (Morris-Praeger-Spiga).

{locally distance-transitive graphs}, (see next talk by Giudici).

Theorem (Praeger 1993)

Let $G \leq Sym(V)$ be quasiprimitive. Then G has ≤ 2 minimal normal subgroups,

Theorem (Praeger 1993)

Let $G \leq \text{Sym}(V)$ be quasiprimitive. Then G has ≤ 2 minimal normal subgroups, and one of the following holds:

- **HA** soc(*G*) is an abelian minimal normal subgroup, and $G \leq AGL(d, p)$;
- **HS** *G* has two minimal normal subgroups, which are nonabelian simple;
- **HC** *G* has two minimal normal subgroups, which are nonabelian non-simple;
- AS G is almost simple;

SD $N = \text{soc}(G) = S^d$ is minimal normal, and $N_v \cong S$;

CD $N = \text{soc}(G) = S^d$ is minimal normal, and $N_v \cong S^e \neq S$;

TW soc(G) is minimal normal and regular;

PA soc(G) is minimal normal, non-simple, and irregular.

We next consider locally-quasiprimitive graphs. We first exclude a trivial case.

A graph Γ is thin if it has a vertex that is adjacent to at most 2 vertices.

We next consider locally-quasiprimitive graphs. We first exclude a trivial case.

A graph Γ is thin if it has a vertex that is adjacent to at most 2 vertices.

Proposition.

A thin edge-transitive graph is one of the following graphs:

- a star;
- a cycle;
- the subdivision of a thick arc-transitive graph.

We next consider locally-quasiprimitive graphs. We first exclude a trivial case.

A graph Γ is thin if it has a vertex that is adjacent to at most 2 vertices.

Proposition.

A thin edge-transitive graph is one of the following graphs:

- a star;
- a cycle;
- the subdivision of a thick arc-transitive graph.

We only need to consider thick graphs.

Lemma.

If Γ is thick and G-locally-quasiprimitive, then a normal quotient Γ_N is (G/N)-locally-quasiprimitive, and either

- Γ_N is a star, or
- Γ_N is thick.

Lemma.

If Γ is thick and G-locally-quasiprimitive, then a normal quotient Γ_N is (G/N)-locally-quasiprimitive, and either

- Γ_N is a star, or
- Γ_N is thick.

Remarks:

• Cycles are not normal quotients of thick locally-quasiprimitive graphs.

Lemma.

If Γ is thick and G-locally-quasiprimitive, then a normal quotient Γ_N is (G/N)-locally-quasiprimitive, and either

- Γ_N is a star, or
- Γ_N is thick.

Remarks:

- Cycles are not normal quotients of thick locally-quasiprimitive graphs.
- For locally-quasiprimitive graphs, Γ is not necessarily a cover of Γ_N, even if Γ_N is thick.

Let $R = \langle a_1, \dots, a_6 \rangle \cong \mathbb{Z}_4^6$, and let $S = \{a_i, a_i^{-1} \mid 1 \le i \le 6\}$. Let $\Gamma = \operatorname{Cay}(R, S)$.

Then Aut Γ has a subgp G = R: A₅ acting arc-transitively on Γ . As $G_{\nu} \cong A_5$ is simple, Γ is *G*-locally-qp of valency 12.

As shown before, for the normal subgroup

$$N = \langle \hat{a}_i^2 \mid 1 \le i \le 6 \rangle \cong \mathbb{Z}_2^6,$$

 Γ_N is of valency 6; in particular, Γ is not a cover of Γ_N .

A G-locally-quasiprimitive graph Γ is basic if

- it is thick, and
- any normal quotient is one of the graphs: **K**₁, **K**₂, a star.

A G-locally-quasiprimitive graph Γ is basic if

- it is thick, and
- any normal quotient is one of the graphs: K₁, K₂, a star.

Lemma

If $\Gamma = (V, E)$ is basic G-locally-quasiprimitive and G is transitive on V, then G is quasiprimitive or bi-quasiprimitive on V.

(*G* being bi-quasiprimitive on *V* means that every minimal normal subgroup of *G* has exactly two orbits on *V*.) Praeger (2003) gave a description of bi-quasiprimitive groups.

Theorem.

Let $\Gamma = (V, E)$ be a basic *G*-locally-quasiprimitive graph such that *G* is intrans on *V*. Then one of the following holds:

Let $\Gamma = (V, E)$ be a basic G-locally-quasiprimitive graph such that G is intrans on V. Then one of the following holds:

(i) $\Gamma = \mathbf{K}_{m,n}$, and $G = G_v G_w$, where (v, w) is an edge;

Let $\Gamma = (V, E)$ be a basic G-locally-quasiprimitive graph such that G is intrans on V. Then one of the following holds:

(i)
$$\Gamma = \mathbf{K}_{m,n}$$
, and $G = G_v G_w$, where (v, w) is an edge;

(ii) G is faithful and quasiprimitive on both biparts of type {X, Y}, where either X = Y or {X, Y} = {SD, CD}, {SD, PA} or {CD, PA}. Further, Γ is not locally-primitive for {X, Y} = {SD, CD}; Γ is not locally 2-arc-transitive for {X, Y} = {CD, PA}.

Let $\Gamma = (V, E)$ be a basic G-locally-quasiprimitive graph such that G is intrans on V. Then one of the following holds:

- (i) $\Gamma = \mathbf{K}_{m,n}$, and $G = G_v G_w$, where (v, w) is an edge;
- (ii) G is faithful and quasiprimitive on both biparts of type $\{X, Y\}$, where either X = Y or $\{X, Y\} = \{SD, CD\}$, $\{SD, PA\}$ or $\{CD, PA\}$. Further, Γ is not locally-primitive for $\{X, Y\} = \{SD, CD\}$; Γ is not locally 2-arc-transitive for $\{X, Y\} = \{CD, PA\}$.
- (iii) G is faithful on both biparts and quasiprimitive on exactly one of them, of which the quasiprimitive type is HA, HS, HC, AS, PA or TW. Moreover, HC type is not locally 2-arc-transitive.

Let $\Gamma = (V, E)$ be a basic G-locally-quasiprimitive graph such that G is intrans on V. Then one of the following holds:

- (i) $\Gamma = \mathbf{K}_{m,n}$, and $G = G_v G_w$, where (v, w) is an edge;
- (ii) G is faithful and quasiprimitive on both biparts of type $\{X, Y\}$, where either X = Y or $\{X, Y\} = \{SD, CD\}$, $\{SD, PA\}$ or $\{CD, PA\}$. Further, Γ is not locally-primitive for $\{X, Y\} = \{SD, CD\}$; Γ is not locally 2-arc-transitive for $\{X, Y\} = \{CD, PA\}$.
- (iii) G is faithful on both biparts and quasiprimitive on exactly one of them, of which the quasiprimitive type is HA, HS, HC, AS, PA or TW. Moreover, HC type is not locally 2-arc-transitive.

Examples exist for each of these cases.

This theorem suggests us to study the following problems.

Problem A

Characterise the graphs for each case appeared in the theorem.

Problem B

Find normal covers or multi-covers of basic locally-quasiprimitive graphs.

Dual actions

We start with an example.

Dual actions

We start with an example.

Let *T* be a simple group, and $\Gamma = \text{Cay}(T, S)$ connected, cubic and symmetric. Let $G = \text{Aut}\Gamma$. Then $G = TG_v$, and $T \cap G_v = 1$.

We start with an example.

Let *T* be a simple group, and $\Gamma = \text{Cay}(T, S)$ connected, cubic and symmetric. Let $G = \text{Aut}\Gamma$. Then $G = TG_v$, and $T \cap G_v = 1$.

Now the vertex set *V* of Γ is *T*, and also *V* can be identified with $[G : G_v]$ such that *G* acts on

 $V = [G:G_v]$

by right multiplication.

We start with an example.

Let *T* be a simple group, and $\Gamma = \text{Cay}(T, S)$ connected, cubic and symmetric. Let $G = \text{Aut}\Gamma$. Then $G = TG_v$, and $T \cap G_v = 1$.

Now the vertex set *V* of Γ is *T*, and also *V* can be identified with $[G : G_V]$ such that *G* acts on

 $V = [G:G_v]$

by right multiplication.

If $T \lhd G$, then Γ is a normal Cayley graph. Otherwise, T is core-free in G, and so G has another coset action on

 $\Omega = [G: T],$

called a dual action of G on $[G : G_v]$.

Note that the stabiliser G_v is transitive on [G : T].

By Tutte's theorem, $G_v = \mathbb{Z}_3$, S_3 , D_{12} , S_4 or $S_4 \times S_2$. Thus, the size of [*G* : *T*] divides 48, and $G \leq S_{48}$.

Proposition.

If Γ is not a normal Cayley graph, then *T* is one of the following groups:

 A_5 , PSL(2, 11), M_{11} , A_{11} , M_{23} , A_{23} , or A_{47} .

Shangjin Xu (PhD project, 2006) completed this work. In particular, for $T = A_{47}$, two 5-arc-transitive graphs are found.

Let *T* be simple, and $T = \langle a, b \rangle$ with o(a) = 3, o(b) = 2. Let $\Gamma = \text{Cos}(T, \langle a \rangle, \langle a \rangle b \langle a \rangle).$

Let T be simple, and $T = \langle a, b \rangle$ with o(a) = 3, o(b) = 2. Let

$$\Gamma = \operatorname{Cos}(T, \langle a \rangle, \langle a \rangle b \langle a \rangle).$$

Then $G := Aut\Gamma = TG_v$ such that $|G_v|$ divides 48.

Suppose that Γ is a Cayley graph of R. Then $G = RG_v$. Let C be the core of R in G. Then $\overline{G} = \overline{R} \overline{G}_v$ such that \overline{R} is core-free in \overline{G} and $\overline{G}_v \cong G_v$. It follows that $T \cong \overline{T} \leq \overline{G} \leq S_{48}$.

Let T be simple, and $T = \langle a, b \rangle$ with o(a) = 3, o(b) = 2. Let

$$\Gamma = \operatorname{Cos}(T, \langle a \rangle, \langle a \rangle b \langle a \rangle).$$

Then $G := Aut\Gamma = TG_v$ such that $|G_v|$ divides 48.

Suppose that Γ is a Cayley graph of R. Then $G = RG_v$. Let C be the core of R in G. Then $\overline{G} = \overline{R} \overline{G}_v$ such that \overline{R} is core-free in \overline{G} and $\overline{G}_v \cong G_v$. It follows that $T \cong \overline{T} \le \overline{G} \le S_{48}$.

Proposition.

If $T \not< S_{48}$, then Γ is not a Cayley graph.

Let T be simple, and $T = \langle a, b \rangle$ with o(a) = 3, o(b) = 2. Let

$$\Gamma = \operatorname{Cos}(T, \langle a \rangle, \langle a \rangle b \langle a \rangle).$$

Then $G := \operatorname{Aut}\Gamma = TG_v$ such that $|G_v|$ divides 48.

Suppose that Γ is a Cayley graph of R. Then $G = RG_v$. Let C be the core of R in G. Then $\overline{G} = \overline{R} \overline{G}_v$ such that \overline{R} is core-free in \overline{G} and $\overline{G}_v \cong G_v$. It follows that $T \cong \overline{T} \le \overline{G} \le S_{48}$.

Proposition.

If $T \not< S_{48}$, then Γ is not a Cayley graph.

Theorem (Liebeck-Shalev)

Except for Sz(q), $Sp(4, 2^{f})$ and finitely many exceptions, every simple group is generated by an element of order 3 and an involution.

Vertex-trans graphs and Cayley graphs

Conjecture (McKay-Praeger 1990's)

Almost all vertex-transitive graphs are Cayley graphs.

Vertex-trans graphs and Cayley graphs

Conjecture (McKay-Praeger 1990's)

Almost all vertex-transitive graphs are Cayley graphs.

However, we have

Theorem

Almost all 3-arc-trans graphs are not Cayley graphs.

Vertex-trans graphs and Cayley graphs

Conjecture (McKay-Praeger 1990's)

Almost all vertex-transitive graphs are Cayley graphs.

However, we have

Theorem

Almost all 3-arc-trans graphs are not Cayley graphs.

Let $\Gamma = (V, E)$ be a connected (G, 3)-arc-transitive graph of valency k. We need a big theorem.

Theorem (Weiss, Trofimov)

The stabiliser G_v has order $|G_v|$ upper-bounded by a function f(k).

Suppose that Γ is a Cayley graph of *R*. Then $G = RG_v$.

Let *C* be the core of *R* in *G*. Then *C* has \geq 3 orbits on *V*.

Let
$$\overline{R} = R/C$$
, and $\overline{G} = G/C$.

- Then \overline{R} is core-free in \overline{G} , $\overline{G} = \overline{R} \overline{G}_v$, and $\overline{G}_v \cong G_v$.
- Thus, $\overline{G} \leq \text{Sym}(\Omega)$, where $\Omega = [\overline{G} : \overline{R}]$.

Now, \overline{G}_{ν} is transitive on Ω , and so $|\Omega|$ divides $|G_{\nu}|$. In particular,

$$|\Omega| \leq f(k)$$
, and $\overline{G} \leq \text{Sym}(f(k))$.

So for each k, only finitely many basic 3-arc-transitive graphs of valency k and their covers are Cayley graphs.