Two-fold orbital graphs and digraphs Part 1

Josef Lauri (UoM), Russell Mizzi (UoM), Raffaele Scapellato (Politecnico di Milano)

August 3, 2010

Convention

An oriented graph is considered to be a finite set of vertices and a set or ordered pairs of vertices. If the arcs (x, y) and (y, x) both exist then we say that the arcs are self-paired. Together, a pair of self-paired arcs are considered to form the edge $\{a, b\}$. Multiple arcs (repetition of the arc $(x, y))$ are not allowed, but loops (the arc $(x, x))$ are possible.

Convention

We distinguish two special types of oriented graphs.
If there is no loop (x, x) and no arc is self-paired then the oriented graph is said to be a digraph.

If there is no loop and every arc is self paired then we get a graph.
If the oriented graph is neither a graph or a digraph then we often call it a mixed graph.

Orbital Graphs

Let Γ be a permutation group acting transitively on a set V. Fix $(u, v) \in V \times V$. Then all pairs $(\alpha(u), \alpha(v))$, with $\alpha \in \Gamma$, form an oriented graph G such that $\Gamma \subseteq \operatorname{Aut}(G)$.

Orbital Graphs

Let Γ be a permutation group acting transitively on a set V. Fix $(u, v) \in V \times V$. Then all pairs $(\alpha(u), \alpha(v))$, with $\alpha \in \Gamma$, form an oriented graph G such that $\Gamma \subseteq \operatorname{Aut}(G)$.
G is vertex- and arc-transitive.

Orbital Graphs

Let Γ be a permutation group acting transitively on a set V. Fix $(u, v) \in V \times V$. Then all pairs $(\alpha(u), \alpha(v))$, with $\alpha \in \Gamma$, form an oriented graph G such that $\Gamma \subseteq \operatorname{Aut}(G)$.
G is vertex- and arc-transitive.
If G is disconnected then all its components are isomorphic

Notation

\mathcal{S} will denote the direct product $S_{n} \times S_{n}$.

Notation

\mathcal{S} will denote the direct product $S_{n} \times S_{n}$.
Γ will denote a subgroup of \mathcal{S}.

Notation

\mathcal{S} will denote the direct product $S_{n} \times S_{n}$.
Γ will denote a subgroup of \mathcal{S}.
Suppose $\pi_{1}, \pi_{2}: \boldsymbol{\Gamma} \rightarrow S_{n}$ are defined by $\pi_{1}((\alpha, \beta))=\alpha$ and $\pi_{2}((\alpha, \beta))=\beta$. Then π_{1} and π_{2} are said to be the projections of $\boldsymbol{\Gamma}$ on S_{n}.

Two-fold orbital oriented graphs

Let $\boldsymbol{\Gamma} \subseteq \mathcal{S}$ where $\pi_{1} \boldsymbol{\Gamma}$ and $\pi_{2} \boldsymbol{\Gamma}$ are transitive on the n-set V.

Two-fold orbital oriented graphs

Let $\boldsymbol{\Gamma} \subseteq \mathcal{S}$ where $\pi_{1} \boldsymbol{\Gamma}$ and $\pi_{2} \boldsymbol{\Gamma}$ are transitive on the n-set V.
For a fixed (u, v) in $V \times V$ let

$$
\boldsymbol{\Gamma}(u, v)=\{(\alpha(u), \beta(v)):(\alpha, \beta) \in \boldsymbol{\Gamma}\}
$$

The set $\Gamma(u, v)$ is called a two-fold orbital.

Two-fold orbital oriented graphs

Let $\boldsymbol{\Gamma} \subseteq \mathcal{S}$ where $\pi_{1} \boldsymbol{\Gamma}$ and $\pi_{2} \boldsymbol{\Gamma}$ are transitive on the n-set V.
For a fixed (u, v) in $V \times V$ let

$$
\boldsymbol{\Gamma}(u, v)=\{(\alpha(u), \beta(v)):(\alpha, \beta) \in \boldsymbol{\Gamma}\}
$$

The set $\Gamma(u, v)$ is called a two-fold orbital.
The oriented graph $G=(V, \Gamma(u, v))$ is said to be a two-fold orbital digraph (TOD) or a two-fold orbital graph (TOG) if it is a digraph or a graph, respectively.

An example

$$
\Gamma=D_{4} \times S_{4} \leq S_{4} \times S_{4}
$$

The graph G has arc-set $\boldsymbol{\Gamma}(1,2)$.
The arc-set of G is self-paired although $\boldsymbol{\Gamma}$ is not.

The components of a disconnected TOG are not necessarily isomorphic

Example

TF-isomorphisms

Let G_{1} and G_{2} be two graphs or digraphs or mixed graphs. Then (α, β) is a two-fold isomorphism from G_{1} to G_{2} (TF-isomorphism) iff α and β are bijections from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$ such that (u, v) is an arc in G_{1} iff $(\alpha(u), \beta(v))$ is an arc in G_{2}.

TF-isomorphisms

Let G_{1} and G_{2} be two graphs or digraphs or mixed graphs. Then (α, β) is a two-fold isomorphism from G_{1} to G_{2} (TF-isomorphism) iff α and β are bijections from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$ such that (u, v) is an arc in G_{1} iff $(\alpha(u), \beta(v))$ is an arc in G_{2}.

If there is a TF-isomorphism between G_{1} and G_{2} we say that G_{1} and G_{2} are $T F$-isomorphic $\left(G_{1} \simeq^{T F} G_{2}\right)$. If $G_{1}=G_{2}$ then the TF-isomorphism is called a TF-automorphism.

TF-isomorphisms

Let G_{1} and G_{2} be two graphs or digraphs or mixed graphs. Then (α, β) is a two-fold isomorphism from G_{1} to G_{2} (TF-isomorphism) iff α and β are bijections from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$ such that (u, v) is an arc in G_{1} iff $(\alpha(u), \beta(v))$ is an arc in G_{2}.

If there is a TF-isomorphism between G_{1} and G_{2} we say that G_{1} and G_{2} are $T F$-isomorphic $\left(G_{1} \simeq^{T F} G_{2}\right)$. If $G_{1}=G_{2}$ then the TF-isomorphism is called a TF-automorphism.

The set of TF-automorphisms of G is a group denoted by Aut ${ }^{\mathrm{TF}}(G)$.

TF-isomorphisms

Let G_{1} and G_{2} be two graphs or digraphs or mixed graphs. Then (α, β) is a two-fold isomorphism from G_{1} to G_{2} (TF-isomorphism) iff α and β are bijections from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$ such that (u, v) is an arc in G_{1} iff $(\alpha(u), \beta(v))$ is an arc in G_{2}.

If there is a TF-isomorphism between G_{1} and G_{2} we say that G_{1} and G_{2} are $T F$-isomorphic $\left(G_{1} \simeq^{T F} G_{2}\right)$. If $G_{1}=G_{2}$ then the TF-isomorphism is called a TF-automorphism.

The set of TF-automorphisms of G is a group denoted by Aut ${ }^{\mathrm{TF}}(G)$.
If (α, α) is a TF-isomorphism (or TF-automorphism) then α is an isomorphism (or automorphism).

TF-isomorphisms

Let G_{1} and G_{2} be two graphs or digraphs or mixed graphs. Then (α, β) is a two-fold isomorphism from G_{1} to G_{2} (TF-isomorphism) iff α and β are bijections from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$ such that (u, v) is an arc in G_{1} iff $(\alpha(u), \beta(v))$ is an arc in G_{2}.

If there is a TF-isomorphism between G_{1} and G_{2} we say that G_{1} and G_{2} are $T F$-isomorphic $\left(G_{1} \simeq^{T F} G_{2}\right)$. If $G_{1}=G_{2}$ then the TF-isomorphism is called a TF-automorphism.

The set of TF-automorphisms of G is a group denoted by Aut ${ }^{\mathrm{TF}}(G)$.

If (α, α) is a TF-isomorphism (or TF-automorphism) then α is an isomorphism (or automorphism).
If $\alpha \neq \beta$ then (α, β) is said to be a non-trivial TF-isomorphism (or TF-automorphism).

An example

If $\alpha=(19)(24)(57)(3)(6)(8)(10)$ and β the identity then (α, β) is a TF-automorphism from the Petersen graph to the second graph shown in the figure.

Some basic properties

■ If (α, β) is a non-trivial TF-automorphism of G then there is no need for any of α or β to be an automorphism of G. (Example below.)

Some basic properties

■ If (α, β) is a non-trivial TF-automorphism of G then there is no need for any of α or β to be an automorphism of G.
(Example below.)
■ If $(\alpha, i d)$ is a two fold automorphism of some graph G then $\alpha \in \operatorname{Aut}(G)$.

Some basic properties

■ If (α, β) is a non-trivial TF-automorphism of G then there is no need for any of α or β to be an automorphism of G.
(Example below.)

- If $(\alpha, i d)$ is a two fold automorphism of some graph G then $\alpha \in \operatorname{Aut}(G)$.
■ Let G be a graph. Then if (α, β) is a two-fold automorphism, (id, β) is also a two fold automorphism iff $(\alpha, i d)$ is a two-fold automorphism.

Some basic properties

■ If (α, β) is a non-trivial TF-automorphism of G then there is no need for any of α or β to be an automorphism of G.
(Example below.)

- If $(\alpha, i d)$ is a two fold automorphism of some graph G then $\alpha \in \operatorname{Aut}(G)$.
■ Let G be a graph. Then if (α, β) is a two-fold automorphism, (id, β) is also a two fold automorphism iff $(\alpha, i d)$ is a two-fold automorphism.
- If (α, β) is a two-fold automorphism of a graph G such that α and β are of a different order, then there exists a non-trivial automorphism of G.

Canonical Double Covers

Let G be a digraph / graph / mixed graph. The canonical double cover (CDC) of G is the digraph $B(G)$ whose vertex-set is $V(G) \times \mathbb{Z}_{2}$ such that there exists an arc joining (u, ϵ) to $(v, \epsilon+1)$ in $B(G)$ iff there exists an arc joining u to v in G.

Canonical Double Covers

Let G be a digraph / graph / mixed graph. The canonical double cover (CDC) of G is the digraph $B(G)$ whose vertex-set is $V(G) \times \mathbb{Z}_{2}$ such that there exists an arc joining (u, ϵ) to $(v, \epsilon+1)$ in $B(G)$ iff there exists an arc joining u to v in G.
$B(G)$ can also be described as the direct product $G \times K_{2}$.

Canonical Double Covers

Let G be a digraph / graph / mixed graph. The canonical double cover (CDC) of G is the digraph $B(G)$ whose vertex-set is $V(G) \times \mathbb{Z}_{2}$ such that there exists an arc joining (u, ϵ) to $(v, \epsilon+1)$ in $B(G)$ iff there exists an arc joining u to v in G.
$B(G)$ can also be described as the direct product $G \times K_{2}$.
$B(G)$ is bipartite.

Canonical Double Covers

Let G be a digraph / graph / mixed graph. The canonical double cover (CDC) of G is the digraph $B(G)$ whose vertex-set is $V(G) \times \mathbb{Z}_{2}$ such that there exists an arc joining (u, ϵ) to $(v, \epsilon+1)$ in $B(G)$ iff there exists an arc joining u to v in G.
$B(G)$ can also be described as the direct product $G \times K_{2}$.
$B(G)$ is bipartite.
If G is bipartite then $B(G)$ is disconnected.

What is preserved by a TF-isomorphism?

What is preserved by a TF-isomorphism?

Theorem
Suppose G_{1} and G_{2} are either both graphs or both digraphs. Then $B\left(G_{1}\right) \simeq B\left(G_{2}\right)$, iff they are TF-isomorphic.

One of the two implications does not always hold

If, in the above result, G_{1} and G_{2} are not both graphs or both digraphs, then there can be a TF-isomorphism between them but their CDC's are not isomorphic.

One of the two implications does not always hold

If, in the above result, G_{1} and G_{2} are not both graphs or both digraphs, then there can be a TF-isomorphism between them but their CDC's are not isomorphic.

Example

Disconnected two-fold orbital graphs

Theorem

Let G be a TOG with no isolated vertices and let its connected components be G_{1}, \ldots, G_{k} such that:

$$
\left|V\left(G_{1}\right)\right| \geq\left|V\left(G_{2}\right)\right| \geq \ldots \geq\left|V\left(G_{k}\right)\right| .
$$

Then each G_{i} is also a TOG. Moreover,
1 if $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{k}\right)\right|$, then G_{1}, \ldots, G_{k} are pairwise TF-isomorphic;
2 otherwise, there exists a unique index $r \in\{1, \ldots, k-1\}$ such that
\square

$$
G_{1} \simeq G_{2} \simeq \ldots \simeq G_{r} ;
$$

2 none of G_{r+1}, \ldots, G_{k} is isomorphic or $T F$-isomorphic to G_{1};
3 $G_{r+1} \simeq^{T F} \ldots \simeq^{T F} G_{k}$; and
$4 G_{1} \simeq B\left(G_{k}\right)$

An example

Example

Figure: G_{2} and G_{3} are (TF-)isomorphic and G_{1} is a CDC of each.

Bipartite disconneced TOGs

Theorem

Let G be a disconnected TOG with no isloated vertices, and let its connected components be G_{1}, \ldots, G_{k}. If one of the components is bipartite then:
1 either all components are isomorphic; or
2 there exists a unique index $r \in\{1, \ldots, k-1\}$ such that:
1

$$
G_{1} \simeq G_{2} \simeq \ldots \simeq G_{r}
$$

2 none of G_{r+1}, \ldots, G_{k} is isomorphic or TF-isomorphic to G_{1};
$3 G_{r+1} \simeq^{T F} \ldots \simeq^{T F} G_{k}$;
$4 G_{1} \simeq B\left(G_{k}\right)$; and
5 all G_{1}, \ldots, G_{r} are bipartite but no G_{r+1}, \ldots, G_{k} is bipartite.

Bipartite disconneced TOGs

Theorem

Let G be a disconnected TOG with no isloated vertices, and let its connected components be G_{1}, \ldots, G_{k}. If one of the components is bipartite then:
1 either all components are isomorphic; or
2 there exists a unique index $r \in\{1, \ldots, k-1\}$ such that:
1

$$
G_{1} \simeq G_{2} \simeq \ldots \simeq G_{r}
$$

2 none of G_{r+1}, \ldots, G_{k} is isomorphic or TF-isomorphic to G_{1};
$3 G_{r+1} \simeq^{T F} \ldots \simeq^{T F} G_{k}$;
$4 G_{1} \simeq B\left(G_{k}\right)$; and
5 all G_{1}, \ldots, G_{r} are bipartite but no G_{r+1}, \ldots, G_{k} is bipartite.

Corollary. A bipartite disconnected TOG has all of its components isomorphic

The components of a non-trivial TF-automorphisms need not be automorphisms

The components of a non-trivial TF-automorphisms need not be automorphisms

Example

Figure: The graph C_{6} has a non-trivial TF-automorphism (α, β) with $\alpha=(123)(4)(5)(6)$ and $\beta=(1)(2)(3)(456)$. Neither α nor β is an element of the automorphism group of G.

So, can a graph with trivial automorphism group have non-trivial TF-automorphism?

So, can a graph with trivial automorphism group have non-trivial TF-automorphism?

Theorem
A bipartite graph which has a trivial automorphism group cannot have non-trivial TF-automorphisms.

So, can a graph with trivial automorphism group have non-trivial TF-automorphism?

Theorem
A bipartite graph which has a trivial automorphism group cannot have non-trivial TF-automorphisms.

However...

Thank you!

