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Regular covering projections

X ≡ a finite, simple, connected and undirected graph

Covering projection: a locally bijective graph epimorphism

q : X̃ → X .

(locally bijective: restrictions N(ṽ)→ N(v) are bijective)

Isomorphic covering projections: for some α ∈ Aut(X ), we have

X̃
α̃−−−−→ X̃ ′yq

yq′

X
α−−−−→ X

In particular, q and q′ are equivalent if α = idX .
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Regular covering projections

Regular covering projection: ∃H ≤ Aut(X̃ ) semiregular s. t.

X̃/H ∼= X

(that is, H-orbits of X̃ are the vertex fibres q−1(v), v ∈ V (X )).
We call H = CT(q) the group of covering transformations.
(Alternatively: regular CP correspond to normal subgroups of π1(X ).)

Theorem (Gross, Tucker, 1973)

Any regular q : X̃ → X is equivalent to some

qζ : X ×ζ H → X , qζ(u, h) = u,

where voltage assignment ζ : A(X )→ H satisfies
ζ(u, v) = (ζ(v , u))−1 and the derived covering graph X ×ζ H has
vertex set V (X )× H and edges defined by

u ∼ v ⇐⇒ (u, g) ∼ (v , gζ(u, v)).
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Example

1 2 3 4

5 6 7 8

· · ·

(3, k)
(4, k)

(5, k)

(6, k)

(1, k)

(2, k)

(7, k)
(8, k)

(3, k + 1)
(4, k + 1)

Figure: K4,4 ×ζ Zp, where ζ(a) = 1 on denoted arcs and trivial elsewhere.
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Lifting automorphisms

α ∈ Aut(X ) lifts along q if

X̃
α̃−−−−→ X̃yq

yq

X
α−−−−→ X

commutes for some α̃ ∈ Aut(X̃ ). For G ≤ Aut(X ), covering
projection q is G -admissible if each α ∈ G lifts.

Lemma (Djoković, 1974)

X̃ connected. If q is G -admissible for some VT/ET/s-AT group
G ≤ Aut(X ), then G̃ (and hence X̃ ) is VT/ET/s-AT.

Corollary

There are infinitely many finite connected cubic 5-AT graphs.
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Lifts using voltages

Since then, many applications in graph theory appeared:

Constructions of examples with particular symmetry
properties.

Computer-assisted compilation of lists.

Structural classification using normal quotients etc.

Malnič, 1996: covers of generalized graphs with semiedges.

Theorem (Malnič, Nedela, Škoviera, 2000: Basic lifting lemma for
regular covers)

α ∈ Aut(X ) lifts along a regular covering projection q ⇐⇒
ζ(W ) = 1 =⇒ ζ(αW ) = 1 for each closed walk W ∈ π1(X , v).

Concrete questions remain hard to answer:

Given p : X̃ → X , find all α ∈ Aut(X ) that lift.

Given X and G ≤ Aut(X ), find all G -admissible q.
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Elementary-abelian covering projections

If CT(q) = Zk
p , the covering projection q is elementary-abelian.

In this case, there is a natural linear representation of Aut(X ):

[ ] : Aut(X ) ↪→ GL(r ,Zp), α 7→ [α] ∈ Mr (Zp)

(By acting on directed cycles of X , each α ∈ Aut(X ) induces a linear

mapping on H1(X ,Zp) ∼= Zr×1
p .)

Theorem (Malnič, Marušič, Potočnik, 2003)

G -admissible elementary-abelian covering projections of X
correspond to [G ]t-invariant subspaces of Zr×1

p . Moreover,

Choice of basis is invariant up to equivalence of projections.

Voltage assignments are obtained from inv. subspace basis.

qU , qV isomorphic ⇐⇒ [α]tU = V for some α ∈ Aut(X ).
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Notes

Du, Kwak, Xu, 2003: Alternative method for lifting α along
elementary-abelian q.

Theorem [MMP] generalizes observations by Širan (2001): For
CT(q) = Zp, lifting α ∈ Aut(X ) is related to eigenvectors of [α].

Theorem (Some nontrivial results obtained by MMP method)

SS EAC of the Heawood graph (Malnič, Marušič, Potočnik)

VT EAC of the Petersen graph (Malnič, Potočnik)

SS EAC of the Moebius-Kantor graph (Malnič, Marušič,
Miklavič, Potočnik)

AT EAC of the Octahedron graph (Kwak, Oh)

AT EAC of the Pappus and the Dodecahedron Graph (Oh)

AT EAC of graphs K5 and K4,4 (K.)
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Arc-transitive elementary-abelian covers of K5

0

a0

1
a1

2

a2

3 a3 4

a4

b0
Aut(K5) = S5 = 〈ρ, τ, σ〉,
where ρ = (01234), τ = (0132), σ = (024).

Minimal AT subgroups are 〈ρ, τ〉 and 〈ρ, σ〉.
# Voltage assignment ζ G -admissible Conditions

ζ(c0) ζ(c1) ζ(c2) ζ(c3) ζ(c4) ζ(c) for AT subgroup

1.


1
0
0
0
0
0




0
1
0
0
0
0




0
0
1
0
0
0




0
0
0
1
0
0




0
0
0
0
1
0




0
0
0
0
0
1

 〈ρ, σ, τ〉 p
any

prime
2.

(
0
1

) (
0
1

) (
0
1

) (
0
1

) (
0
1

) (
1
0

)
〈ρ, τ〉

3.

(
1
0
0
0

) (
0
1
0
0

) (
0
0
1
0

) (
0
0
0
1

) −1
−1
−1
−1

 (
0
0
0
0

)
〈ρ, τ〉

4. ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 2+ι ) 〈ρ, τ〉 p 6= 5
p = 1 (mod 4)

ι2 = −1 (mod p)
5.

 1
1
0
0
0

  1
0
1
0
0

  1
0
0
1
0

  1
0
0
0
1




1
−1
−1
−1
−1


 2+ι

0
0
0
0

 〈ρ, τ〉

6.

(
1
1
0

) (
1
0
1

) (
1
−1
η

)(
1
−η
−η

)(
1
η
−1

)(
1+2η

0
0

)
〈ρ, σ〉

p = ±1 (mod 5),

η2 + η = 1 (mod p)

7. 2 sporadic cases p=2

8. 12 sporadic cases p=5
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Notes

A homology basis reflecting the rotational symmetry of K5

was deliberately chosen in order to simplify the computations.

Subcases for different p essentialy depend on the factorization
of the minimal polynomials of respective matrices over Zp.

For p not dividing |G |, a classical theorem by Maschke
(1892?) can be applied in order to construct all [G ]-invariant
subspaces as direct sums of minimal ones.

Voltage functions carry plenty of information on respective
covers. For instance, covering graphs with girth(X ) ≤ 5 are
easily identified.
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Example

Potočnik, Wilson, 2006: Classification of ET 4-valent graphs of
girth at most 4.

Corollary

Let X̃ be an arc-transitive cover of K5. Then: Girth(X̃ ) = 4
⇐⇒ X̃ admits a toroidal embedding (of type {4, 4}a,b).

Example: Minimal nontrivial AT EAC of K5 corresponds to toroidal
map of type {4, 4}3,1.
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Arc-transitive elementary-abelian covers of K4,4

1 2 3 4

5 6 7 8

Aut(X ) is relatively large and complicated.

There are (up to conjugacy) 6 minimal AT subgroups, each
generated by some subset of 8 different automorphisms:

〈s, r , a〉, 〈s, r , b〉, 〈s, r , c〉, 〈s, r , d〉, 〈t, d〉, 〈t, e〉.

The problem essentially reduces to simultaneous
block-diagonalization of certain 9× 9 matrices.
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Arc-transitive elementary-abelian covers of K4,4

Maschke’s theorem applies for all p 6= 2. However, it is hard
to identify all minimal invariant subspaces.

Instead, if some G -invariant subspace is known, then all its
G -invariant complements appear as solutions of a certain
linear system.

With a couple of tricks, large G -invariant subspaces are split
to smaller ones or proven minimal (independently of p 6= 2).

The resulting minimal non-equivalent AT covering projections
are further reduced to 8 different isomorphism classes.
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Thank you!
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