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Regular covering projections

X = a finite, simple, connected and undirected graph

Covering projection: a locally bijective graph epimorphism
qg: X — X.

(locally bijective: restrictions N(¥) — N(v) are bijective)
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Regular covering projections

X = a finite, simple, connected and undirected graph

Covering projection: a locally bijective graph epimorphism
qg: X — X.
(locally bijective: restrictions N(¥) — N(v) are bijective)

Isomorphic covering projections: for some o € Aut(X), we have

oo Lo
X —2— X
In particular, g and ¢’ are equivalent if @ = id.
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Regular covering projections

Regular covering projection: 3H < Aut(X) semiregular s. t.

X/H=X

(that is, H-orbits of X are the vertex fibres g~ 1(v), v € V(X)).
We call H = CT(q) the group of covering transformations.
(Alternatively: regular CP correspond to normal subgroups of m1(X).)
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Regular covering projections

Regular covering projection: 3H < Aut(f() semiregular s. t.

X/H=X

(that is, H-orbits of X are the vertex fibres g~ 1(v), v € V(X)).
We call H = CT(q) the group of covering transformations.
(Alternatively: regular CP correspond to normal subgroups of m1(X).)

Theorem (Gross, Tucker, 1973)

Any regular q: X — X is equivalent to some
qc: X X¢ H —>)<7 qg(u,h) = u,

where voltage assignment ¢: A(X) — H satisfies
¢(u,v) = (¢(v,u))™! and the derived covering graph X x¢ H has
vertex set V(X) x H and edges defined by

u~v <= (u,g)~ (v,g¢(u,v)).
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Figure:

3.4

Ka,a X¢ Zp, where ((a) = 1 on denoted arcs and trivial elsewhere.
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Lifting automorphisms
a € Aut(X) lifts along q if

o s
X —2 5 X

commutes for some & € Aut(X). For G < Aut(X), covering
projection g is G-admissible if each a € G lifts.
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Lifting automorphisms
a € Aut(X) lifts along q if

o s
X —2 5 X

commutes for some & € Aut(X). For G < Aut(X), covering
projection g is G-admissible if each o € G lifts.

Lemma (Djokovi¢, 1974)

X connected. If g is G-admissible for some VT/ET/s-AT group
G < Aut(X), then G (and hence X) is VT/ET/s-AT.

There are infinitely many finite connected cubic 5-AT graphs.
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Lifts using voltages

Since then, many applications in graph theory appeared:

o Constructions of examples with particular symmetry
properties.

@ Computer-assisted compilation of lists.

@ Structural classification using normal quotients etc.
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Lifts using voltages

Since then, many applications in graph theory appeared:
o Constructions of examples with particular symmetry
properties.
@ Computer-assisted compilation of lists.
@ Structural classification using normal quotients etc.

Malni¢, 1996: covers of generalized graphs with semiedges.

Theorem (Malnig, Nedela, gkoviera, 2000: Basic lifting lemma for

regular covers)

a € Aut(X) lifts along a regular covering projection q <~
((W)=1 = ((aW) =1 for each closed walk W € m1(X,v).

Concrete questions remain hard to answer:
o Given p: X — X, find all a € Aut(X) that lift.
@ Given X and G < Aut(X), find all G-admissible q.
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Elementary-abelian covering projections

If CT(q) = Z[’;, the covering projection ¢ is elementary-abelian.
In this case, there is a natural linear representation of Aut(X):
[ ]: Aut(X) = GL(r, Zp), @ > [a] € M,(Zp)

(By acting on directed cycles of X, each oo € Aut(X) induces a linear
mapping on Hy(X,Zp) = Z*' )
Theorem (Malni¢, Marusi¢, Poto&nik, 2003)

G-admissible elementary-abelian covering projections of X
correspond to [G]!-invariant subspaces of Z,’,Xl. Moreover,

@ Choice of basis is invariant up to equivalence of projections.

@ Voltage assignments are obtained from inv. subspace basis.

® qu, qy isomorphic < [a]'U =V for some a € Aut(X).
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Notes

Du, Kwak, Xu, 2003: Alternative method for lifting « along
elementary-abelian q.

Theorem [MMP] generalizes observations by Siran (2001): For
CT(q) = Zp, lifting o € Aut(X) is related to eigenvectors of [a].

Theorem (Some nontrivial results obtained by MMP method)
@ SS EAC of the Heawood graph (Malni&, Marusi&, Poto¢nik)
@ VT EAC of the Petersen graph (Malni&, Potocnik)
@ SS EAC of the Moebius-Kantor graph (Malni¢, Marusig,
Miklavié, Poto&nik)
AT EAC of the Octahedron graph (Kwak, Oh)
AT EAC of the Pappus and the Dodecahedron Graph (Oh)
AT EAC of graphs Ks and Ks 4 (K.)
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Arc-transitive elementary-abelian covers of Kjs

Aut(Ks) = Ss = (p, 7,0,
where p = (01234), 7 = (0132), o = (024).
Minimal AT subgroups are {(p,7) and {p, o).

# Voltage assignment ¢ G-admissible Conditions
C(co) ¢(c1) C(c2) ¢(e3) <(ea) () for AT subgroup
T 0 0 0 0 0
0 1 0 0 0 0
- (8) (g) ((1)) (g) (8) (g) e "
0 0 0 0 1 0 any
0 0 0 0 0 1 !
O R ) I G A IS DR ) B P ’
) (9) (8 (8) (1) (9
(B0 GG e
0 0 0 1 —1 0
IR ) R ) RN € R € RN €3 RN G0 Ry pppesy PS5
1 1 1 1 1 2+ p=1 (mod 4)
1 0 0 0 -1 0 12 = —1 (mod p)
CHOOH00 -
0 0 0 1 —1 0
T T T 717 T 1+2n p = =+1 (mod 5),
o () (1) GHE))TE) e pr el
7. 2 sporadic cases p=2
8. 12 sporadic cases p=5
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@ A homology basis reflecting the rotational symmetry of Ks
was deliberately chosen in order to simplify the computations.

@ Subcases for different p essentialy depend on the factorization
of the minimal polynomials of respective matrices over Z,.

@ For p not dividing |G|, a classical theorem by Maschke
(18927) can be applied in order to construct all [G]-invariant
subspaces as direct sums of minimal ones.

@ Voltage functions carry plenty of information on respective
covers. For instance, covering graphs with girth(X) <5 are
easily identified.
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Poto&nik, Wilson, 2006: Classification of ET 4-valent graphs of
girth at most 4.

Let X be an arc-transitive cover of Ks. Then: Girth(X) = 4
<= X admits a toroidal embedding (of type {4,4}, ).

| —1

Example: Minimal nontrivial AT EAC of K5 corresponds to toroidal
map of type {4,4}31.
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Arc-transitive elementary-abelian covers of Kj 4

oo

e Aut(X) is relatively large and complicated.

@ There are (up to conjugacy) 6 minimal AT subgroups, each
generated by some subset of 8 different automorphisms:

<S7 r7 a>) <SJ I’, b>7 <$, r? C>7 <57 r7 d>7 <t7 d>’ <t7 e>‘
@ The problem essentially reduces to simultaneous

block-diagonalization of certain 9 x 9 matrices.
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Arc-transitive elementary-abelian covers of Kj 4

@ Maschke's theorem applies for all p # 2. However, it is hard
to identify all minimal invariant subspaces.

@ Instead, if some G-invariant subspace is known, then all its
G-invariant complements appear as solutions of a certain
linear system.

@ With a couple of tricks, large G-invariant subspaces are split
to smaller ones or proven minimal (independently of p # 2).

@ The resulting minimal non-equivalent AT covering projections
are further reduced to 8 different isomorphism classes.
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Thank you!

Rogla, 2007
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