2nd International Workshop on Symmetries of Graphs and Networks

August 1 - August 6, 2010, Rogla, Slovenija

Arc-transitive elementary-abelian covers of graphs

Boštjan Kuzman, University of Ljubljana, Slovenia

Regular covering projections

 $X \equiv$ a finite, simple, connected and undirected graph Covering projection: a locally bijective graph epimorphism

$$q: \tilde{X} \to X.$$

(locally bijective: restrictions $N(\tilde{v}) \rightarrow N(v)$ are bijective)

 $X \equiv$ a finite, simple, connected and undirected graph Covering projection: a locally bijective graph epimorphism

$$q: \tilde{X} \to X.$$

(locally bijective: restrictions $N(\tilde{v}) \rightarrow N(v)$ are bijective)

Isomorphic covering projections: for some $\alpha \in Aut(X)$, we have

In particular, q and q' are equivalent if $\alpha = id_X$.

Regular covering projections

Regular covering projection: $\exists H \leq \operatorname{Aut}(\tilde{X})$ semiregular s. t.

 $\tilde{X}/H \cong X$

(that is, *H*-orbits of \tilde{X} are the vertex fibres $q^{-1}(v)$, $v \in V(X)$). We call H = CT(q) the group of covering transformations. (Alternatively: regular CP correspond to normal subgroups of $\pi_1(X)$.)

Regular covering projections

Regular covering projection: $\exists H \leq \operatorname{Aut}(\tilde{X})$ semiregular s. t.

 $\tilde{X}/H \cong X$

(that is, *H*-orbits of \tilde{X} are the vertex fibres $q^{-1}(v)$, $v \in V(X)$). We call H = CT(q) the group of covering transformations. (Alternatively: regular CP correspond to normal subgroups of $\pi_1(X)$.)

Theorem (Gross, Tucker, 1973)

Any regular $q \colon \widetilde{X} \to X$ is equivalent to some

$$q_{\zeta} \colon X \times_{\zeta} H \to X, \ q_{\zeta}(u, h) = u,$$

where voltage assignment $\zeta : A(X) \to H$ satisfies $\zeta(u, v) = (\zeta(v, u))^{-1}$ and the derived covering graph $X \times_{\zeta} H$ has vertex set $V(X) \times H$ and edges defined by

$$u \sim v \iff (u,g) \sim (v,g\zeta(u,v)).$$

Figure: $K_{4,4} \times_{\zeta} \mathbb{Z}_p$, where $\zeta(a) = 1$ on denoted arcs and trivial elsewhere.

Lifting automorphisms

 $\alpha \in Aut(X)$ lifts along q if

commutes for some $\tilde{\alpha} \in \operatorname{Aut}(\tilde{X})$. For $G \leq \operatorname{Aut}(X)$, covering projection q is G-admissible if each $\alpha \in G$ lifts.

Lifting automorphisms

 $\alpha \in Aut(X)$ lifts along q if

commutes for some $\tilde{\alpha} \in \operatorname{Aut}(\tilde{X})$. For $G \leq \operatorname{Aut}(X)$, covering projection q is G-admissible if each $\alpha \in G$ lifts.

Lemma (Djoković, 1974)

 \tilde{X} connected. If q is G-admissible for some VT/ET/s-AT group $G \leq \operatorname{Aut}(X)$, then \tilde{G} (and hence \tilde{X}) is VT/ET/s-AT.

Corollary

There are infinitely many finite connected cubic 5-AT graphs.

Lifts using voltages

Since then, many applications in graph theory appeared:

- Constructions of examples with particular symmetry properties.
- Computer-assisted compilation of lists.
- Structural classification using normal quotients etc.

Lifts using voltages

Since then, many applications in graph theory appeared:

- Constructions of examples with particular symmetry properties.
- Computer-assisted compilation of lists.
- Structural classification using normal quotients etc.

Malnič, 1996: covers of generalized graphs with semiedges.

Theorem (Malnič, Nedela, Škoviera, 2000: Basic lifting lemma for regular covers)

 $\alpha \in \operatorname{Aut}(X)$ lifts along a regular covering projection $q \iff \zeta(W) = 1 \implies \zeta(\alpha W) = 1$ for each closed walk $W \in \pi_1(X, v)$.

Concrete questions remain hard to answer:

- Given $p \colon \tilde{X} \to X$, find all $\alpha \in Aut(X)$ that lift.
- Given X and $G \leq Aut(X)$, find all G-admissible q.

Elementary-abelian covering projections

If $CT(q) = \mathbb{Z}_p^k$, the covering projection q is elementary-abelian.

In this case, there is a natural linear representation of Aut(X):

$$[\quad]\colon \operatorname{Aut}(X) \hookrightarrow \operatorname{GL}(r, \mathbb{Z}_p), \alpha \mapsto [\alpha] \in M_r(\mathbb{Z}_p)$$

(By acting on directed cycles of X, each $\alpha \in Aut(X)$ induces a linear mapping on $H_1(X, \mathbb{Z}_p) \cong \mathbb{Z}_p^{r \times 1}$.)

Theorem (Malnič, Marušič, Potočnik, 2003)

G-admissible elementary-abelian covering projections of *X* correspond to $[G]^t$ -invariant subspaces of $\mathbb{Z}_p^{r \times 1}$. Moreover,

- Choice of basis is invariant up to equivalence of projections.
- Voltage assignments are obtained from inv. subspace basis.
- q_U, q_V isomorphic $\iff [\alpha]^t U = V$ for some $\alpha \in Aut(X)$.

Du, Kwak, Xu, 2003: Alternative method for lifting α along elementary-abelian q.

Theorem [MMP] generalizes observations by Širan (2001): For $CT(q) = \mathbb{Z}_p$, lifting $\alpha \in Aut(X)$ is related to eigenvectors of $[\alpha]$.

Theorem (Some nontrivial results obtained by MMP method)

- SS EAC of the Heawood graph (Malnič, Marušič, Potočnik)
- VT EAC of the Petersen graph (Malnič, Potočnik)
- SS EAC of the Moebius-Kantor graph (Malnič, Marušič, Miklavič, Potočnik)
- AT EAC of the Octahedron graph (Kwak, Oh)
- AT EAC of the Pappus and the Dodecahedron Graph (Oh)
- AT EAC of graphs K_5 and $K_{4,4}$ (K.)

Arc-transitive elementary-abelian covers of K_5

Aut(K_5) = $S_5 = \langle \rho, \tau, \sigma \rangle$, where ρ = (01234), τ = (0132), σ = (024). Minimal AT subgroups are $\langle \rho, \tau \rangle$ and $\langle \rho, \sigma \rangle$.

#	Voltage assignment ζ						G-admissible	Conditions
	$\zeta(c_0) \zeta$	(c_1)	$\zeta(c_2)$	$\zeta(c_3)$	$\zeta(c_4)$	$\zeta(c)$	for AT subgroup	
1.	$ \left(\begin{array}{c}1\\0\\0\\0\\0\\0\end{array}\right) \left(\right) $	$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$ \left(\begin{array}{c}0\\0\\1\\0\\0\\0\end{array}\right) $	$ \left(\begin{array}{c}0\\0\\0\\1\\0\\0\end{array}\right) $	$ \left(\begin{array}{c}0\\0\\0\\0\\1\\0\end{array}\right) $	$ \left(\begin{array}{c}0\\0\\0\\0\\0\\1\end{array}\right) $	$\langle \rho, \sigma, \tau \rangle$	p any prime
2.	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ($(\begin{array}{c} 0 \\ 1 \end{array})$	$\left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right)$	$(\begin{array}{c} 0 \\ 1 \end{array})$	$\left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right)$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\langle \rho, \tau \rangle$	
3.	$ \left(\begin{array}{c}1\\0\\0\\0\end{array}\right) \left(\begin{array}{c}1\\0\\0\end{array}\right) $	$\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$	$\left(\begin{array}{c} 0\\ 0\\ 1\\ 0\end{array}\right)$	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 1 \end{array}\right)$	$\begin{pmatrix} -1\\ -1\\ -1\\ -1 \end{pmatrix}$	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\end{array}\right)$	$\langle \rho, \tau \rangle$	
4.	(1)	(1)	(1)	(1)	(1)	(2+ı)	$\langle \rho, \tau \rangle$	$p \neq 5$
5.	$ \left(\begin{array}{c}1\\1\\0\\0\\0\end{array}\right) \left(\right) $	$\left(\begin{array}{c}1\\0\\1\\0\\0\end{array}\right)$	$\begin{pmatrix} 1\\0\\0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\ 0\\ 0\\ 0\\ 1 \end{pmatrix}$	$\begin{pmatrix} 1\\ -1\\ -1\\ -1\\ -1\\ -1 \end{pmatrix}$	$\left(\begin{array}{c}2+\iota\\0\\0\\0\\0\end{array}\right)$	$\langle \rho, \tau \rangle$	$p = 1 \pmod{4}$ $\iota^2 = -1 \pmod{p}$
6.	$\begin{pmatrix} 1\\1\\0 \end{pmatrix} \left(\begin{array}{c} \end{array} \right)$	$\begin{pmatrix} 1\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\ -1\\ \eta \end{pmatrix}$	$\begin{pmatrix} 1\\ -\eta\\ -\eta \end{pmatrix}$	$\begin{pmatrix} 1\\ \eta\\ -1 \end{pmatrix}$	$\begin{pmatrix} 1+2\eta\\ 0\\ 0 \end{pmatrix}$	$\Big) \langle ho, \sigma angle$	$p = \pm 1 \pmod{5},$ $\eta^2 + \eta = 1 \pmod{p}$
7.	2 sporadic cases							p=2
8.	12 sporadic cases							p=5

・ロト・日本・日本・日本・日本・日本

9 / 14

Notes

- A homology basis reflecting the rotational symmetry of K₅ was deliberately chosen in order to simplify the computations.
- Subcases for different p essentialy depend on the factorization of the minimal polynomials of respective matrices over Z_p.
- For p not dividing |G|, a classical theorem by Maschke (1892?) can be applied in order to construct all [G]-invariant subspaces as direct sums of minimal ones.
- Voltage functions carry plenty of information on respective covers. For instance, covering graphs with girth(X) ≤ 5 are easily identified.

Example

Potočnik, Wilson, 2006: Classification of ET 4-valent graphs of girth at most 4.

Corollary

Let \tilde{X} be an arc-transitive cover of K_5 . Then: Girth $(\tilde{X}) = 4$ $\iff \tilde{X}$ admits a toroidal embedding (of type $\{4,4\}_{a,b}$).

Example: Minimal nontrivial AT EAC of K_5 corresponds to toroidal map of type $\{4,4\}_{3,1}$.

Arc-transitive elementary-abelian covers of $K_{4,4}$

- Aut(X) is relatively large and complicated.
- There are (up to conjugacy) 6 minimal AT subgroups, each generated by some subset of 8 different automorphisms:

$$\langle s, r, a \rangle, \langle s, r, b \rangle, \langle s, r, c \rangle, \langle s, r, d \rangle, \langle t, d \rangle, \langle t, e \rangle.$$

• The problem essentially reduces to simultaneous block-diagonalization of certain 9 × 9 matrices.

- Maschke's theorem applies for all p ≠ 2. However, it is hard to identify all minimal invariant subspaces.
- Instead, if some *G*-invariant subspace is known, then all its *G*-invariant complements appear as solutions of a certain linear system.
- With a couple of tricks, large G-invariant subspaces are split to smaller ones or proven minimal (independently of $p \neq 2$).
- The resulting minimal non-equivalent AT covering projections are further reduced to 8 different isomorphism classes.

Thank you!

