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Maps

Definition. A map M with an underlying connected graph Γ is a
triple

M = (Γ; R, L)

where R (rotation) is a permutation of the arc set A(Γ) whose
orbits are the sets of arcs initiated from the same vertex, and L
(dart-reversing involution) is an involution of A(Γ) whose orbits are
the sets of arcs based on the same edge.



Regular maps

Definition. An isomorphism ϕ : M1 →M2 is a bijection
ϕ : A(Γ1) → A(Γ2) such that

R1ϕ = ϕR2 and L1ϕ = ϕL2.

Definition. An automorphism of a map M = (Γ; R, L) is an
automorphism ϕ of Γ whose action on A(Γ) is an automorphism of
M.

Fact. For a map M = (Γ; R, L) the automorphism group Aut(M)
acts semiregularly on A(Γ), therefore |Aut(M)| ≤ |A(Γ)|.

Definition. A map M is regular if |Aut(M)| = |A(Γ)|.
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Cayley maps

Definition. Let S be a subset of a group G , 1 /∈ S , S = S−1, and
〈S〉 = G . The Cayley graph Cay(G ,S) with connection set S is
the graph (V ,E ) such that

V = G and E =
{
{x , sx} | x ∈ G , s ∈ S

}
.

Definition. Let S be a subset of a group G , 1 /∈ S , S = S−1,
〈S〉 = G , and let p be a cyclic permutation of S . The Cayley map
CM(G ,S , p) is the map M = (Γ; R, L), with Γ = Cay(G ,S), and
the rotation R is defined as

(x , sx)R = (x , p(s)x), x ∈ G , s ∈ S .

Fact. If M is a Cayley map M over a group G , then the right
regular representation G∗ ≤ Aut(M) (g∗ ∈ G∗ acts as xg∗ = xg ,
x ∈ G ).
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Regular Cayley maps and skew-morphisms

Definition. A skew-morphism of a group G is a permutation ψ of
G such that there exists a function π : G → {0, 1, . . . ,m − 1}
(power function), where m is the order of ψ, such that

I 1ψ = 1,

I (xy)ψ = xψ
π(y)

yψ for all x , y ∈ K .

Theorem. (Jajcay, Širáň 2002) A Cayley map CM(G ,S , p) is
regular if and only if there exists a skew-morphism of G such that
S is an orbit of G and ψ|S = p.

Proposition. A permutation ψ of G is skew-morphisms if and only
if 1ψ = 1 and X = 〈G∗, ψ〉 has stabilizer X1 = 〈ψ〉.
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t-balanced Cayley maps

Definition. A Cayley map M = CM(G ,S , p) is t-balanced if
p(s)−1 = pt(s−1) for all s ∈ S . In particular, if t = 1, then we say
that M is balanced.

Theorem. (Conder, Jajcay and Tucker) Let M = CM(G ,S , p) be a
regular Cayley map with associated skew-morphism ψ and
power-function π.

I M is balanced if and only if ψ is an automorphism of G .

I M is t-balanced for t > 1 if and only if t2 ≡ 1 (mod |S |), π
has only two values 1 and t,

{x ∈ G | π(x) = 1} = G+ ≤ G ,

such that [G : G+] = 2, ψ fixes G+, and ψ|G+ is an
automorphism of G+.
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Classification results

The only class of finite groups over which all regular Cayley maps
are classified is the class of cyclic groups due to Conder and Tuc-
ker.

Besides this result only partial classifications are known:

I regular balanced Cayley maps over dihedral and generalized
quaternion groups (Wang and Feng, 2005).

I regular t-balanced Cayley maps over dihedral groups (Kwak,
Kwon, and Feng, 2006),

I regular t-balanced Cayley maps over dicyclic groups (Kwak
and Oh, 2008)

I regular t-balanced Cayley maps over semi-dihedral groups
(Oh, 2009).

Remark. To classify regular Cayley maps over dihedral groups one
needs to consider only those maps that are not t-balanced for any
t.
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Construction of non t-balanced Cayley maps over D2n, n is
odd

D2n = 〈r , s | r2 = s2 = (rs)n = 1〉, c = rs,Cn = 〈c〉.

Let T be the set of all pairs (n, `) of positive integers satisfying the
following conditions:

I n is an odd number, n ≡ 0 (mod 3), and

I ` is an element in Z∗n of odd order m.

For each (n, `) in T we define a Cayley map CM(D2n,S , p), which
we denote also by CM(n, `), as follows:

S =
{
c`

i
, c−`

i
, rc`

i
, rc−`

i | i ∈ {0, . . . ,m − 1}
}
,

p = (c , rc−`, rc`
2
, c−`

3
, · · · c`

4m−4
, rc−`

4m−3
, rc`

4m−2
, c−`

4m−1
).

Proposition. The Cayley map CM(n, `) is regular and not
t-balanced for any t.
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Proof. CM(n, `) is regular:
Case ` = 1. S = {c , c−1, rc , rc−1}, p = (c , rc−1, rc , c−1).

N = 〈µblue , µred〉 ∼= Z2
2.

N is normalized by D∗, G = N o D∗.

G1 = 〈µbluer∗〉 = 〈ψ〉, ψ is a skew-morphisms.

ψ|S = (c , cψ, cψ
2
, cψ

3
) = p, CM(n, 1) is regular.
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General case:

S =
{
c`

i
, c−`

i
, rc`

i
, rc−`

i | i ∈ {0, . . . ,m − 1}
}
,

p = (c , rc−`, rc`
2
, c−`

3
, · · · c`

4m−4
, rc−`

4m−3
, rc`

4m−2
, c−`

4m−1
).

Take σ in Aut(D2n) defined by rσ = r and cσ = c`.

N is normalized by σ, G = (N o D∗) o 〈σ〉.

G1 = 〈µbluer∗, σ〉 = 〈ψ〉.

ψ|S = p, CM(n, `) is regular.

CM(n, `) is not t-balanced:

I cψ = rc−1, ψ /∈ Aut(D2n), not balanced.

I ψ does not fix Cn < D2n, not t-balanced for any t > 1.
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Classification of regular Cayley maps over D2n, n is odd

Theorem (K, Marušič, Muzychuk) Let M be a regular Cayley map
over a dihedral group D2n such that n is odd and it is not
t-balanced for any t.

(i) M is isomorphic to a map CM(n, `) for some (n, `) ∈ T .

(ii) For any two pairs (n, `1), (n, `2) ∈ T , the maps CM(n, `1)
and CM(n, `2) are isomorphic if and only if `1 = `2.

.



Ingredients of proof I: arc-inverting involutions

Definition. A graph Γ is G -arc-regular if G ≤ Aut(Γ), and G acts
regularly on the arc set A(Γ).

Lemma. Let Γ be a connected and G -arc-regular graph. Then the
following hold.

(i) For each arc (x , y) of Γ, there exists a unique involution
txy ∈ G which inverts (x , y) (that is, x txy = y and y txy = x).

(ii) The set of all involutions T = {txy | (x , y) ∈ A(Γ)} form a
single conjugacy class of G .

(iii) For each t ∈ T , the centralizer CG (t) acts regularly on the
set of all arcs inverted by t.

(iv) For each arc (x , y) of Γ, G = 〈Gx , txy 〉.

Remark. The involutions txy in the above lemma are called the
arc-inverting involutions of Γ in G (Conder, Jajcay and Tucker
2007).
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Lemma. Let Γ = Cay(D2n,S) be a connected, G -arc-regular graph,
and T be the set of arc-inverting involutions of Γ in G . Then the
following hold.

(i) For each s ∈ S \ Cn, the permutation s∗ is in T , and

|CG (s∗)| = |CD2n(s)| · |S ∩ sD2n |,

where sD2n is a conjugacy class of s in D2n.

(ii) If |S ∩ Cn| = |S |/2 and n is odd, then |T | = 2n.

Corollary. Let M = CM(D2n,S , p) be a regular Cayley map such
that n is odd. Then M is balanced ⇐⇒ S ∩ Cn = ∅.

Proof. ⇒ Because of 〈S〉 = G and all s ∈ S are of the same order.
⇐ Cay(D2n,S) is G -arc-regular, G = Aut(M). The above lemma
implies in turn that |CG (s∗)| = 2|S |, |sG

∗ | = n = sD∗ ,
〈sG
∗ 〉 = D∗ E G , M is balanced. �
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Ingredients of proof II: G -arc-regular dihedrants with trivial
cyclic core

Definition. For a group A and its subgroup B ≤ A, the core of B
in A is the largest normal subgroup of A contained in B, notation:
coreA(B). The subgroup B ≤ A is core-free if coreA(B) = 1.

Theorem. (K, Marušič, and Muzychuk) Let Γ = Cay(D2n,S) be a
connected, G -arc-regular graph such that (D2n)∗ ≤ G , and (Cn)∗
is core-free in G . Then one of the following holds.

(i) n = 1, Γ ∼= K2, and G ∼= S2,
(ii) n = 2, Γ ∼= K4, and G ∼= A4,
(iii) n = 3, Γ ∼= K2,2,2, and G ∼= S4,
(iv) n = 2m, m is an odd number, Γ ∼= Kn,n, and

G ∼= (Dn × Dn) o 〈σ〉, where σ is an automorphism of
Dn × Dn interchanging the coordinates (that is,
(x , y)σ = (y , x) for all (x , y) ∈ Dn × Dn).

Remark. By the above theorem we see that if M = CM(D2n,S , p)
is a regular Cayley map such that n is odd, and n > 3, then
Aut(M) has a non-trivial normal subgroup contained in (Cn)∗.
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Ingredients of proof III: quotient maps

Definition. Let Γ be a graph, and B be a partition of V (Γ). The
quotient graph Γ/B is the graph (V ,E ) such that V = B and for
two classes B1,B2 ∈ B, {B1,B2} ∈ E if and only if exists
{v1, v2} ∈ E (Γ) such that v1 ∈ B1 and v2 ∈ B2.

Definition. Let M = (Γ; R, L) be a regular map, and let B be a
non-trivial, normal imprimitivity system of Aut(M). The relation
∼B on A(Γ) is defined by (u1, v1) ∼B (u2, v2) if and only if exist
block B1,B2 ∈ B such that u1, u2 ∈ B1 and v1, v2 ∈ B2.

Proposition. Let Γ be a G -arc-regular graph, and B be a normal
non-trivial imprimitivity system of G . If the stabilizer Gv is a
Hamiltonian group for v ∈ V (Γ), then the quotient graph Γ/B is
GB-arc-regular.
Corollary. The relation ∼B is R-invariant.
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Definition. The quotient map Γ/M is the map

M/B = (Γ/B;RB, LB),

where RB is the permutation of A(Γ/B) induced by R, and LB is
the dart-reversing involution switching the arcs of Γ/B.

Corollary. Let M = (Γ; R, L) be a regular map, and B be a
non-trivial, normal imprimitivity system of Aut(M). Then the
quotient map M/B is regular, and Aut(M/B) = Aut(M)B.

Corollary. Let M = CM(D2n,S , p) be a regular Cayley map such
that n is odd. Then |S ∩ Cn| = |S |/2, and the set T of
arc-inverting involutions has size |T | = 2n..
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Proof of (i) of Theorem.
Let M = CM(D2n,S , p) be regular and not t-balanced for any t.

We reconstruct the group G = Aut(M):

I G has an imprimitivity system B of block size 2.
By replacing M with a suitable isomorphic map, we may
assume that B = {1, r}G .

I The kernel of G acting on B is N = 〈µblue , µred〉.
I The subgroup of G generated by the set T of arc-inverting

involutions is 〈sG
∗ 〉 = N o D∗.

I Let G1 = 〈ψ〉. Then ψ4 = σ ∈ Aut(D2n).
G = (N o D∗) o 〈σ〉, and M∼= CM(n, `). �
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Thank you!


