A characterization of Leonard pairs using the notion of a tail

Edward Hanson

University of Wisconsin-Madison

2nd International Workshop on Symmetries of Graphs and Networks, Rogla, Slovenia, August 1-6, 2010

Introduction

This talk is about Leonard pairs and Leonard systems, which are defined using linear algebra.

Leonard pairs have applications to such areas as distance-regular graphs, orthogonal polynomials, and representation theory.

In this talk, we characterize the Leonard pairs using the notion of a tail. This notion was originally introduced in the context of distance-regular graphs.

The main theorem can be viewed as an algebraic version of a theorem of Jurišić, Terwilliger, and Zitnik proven for Q-polynomial distance-regular graphs in 2009.

Preliminaries

We begin by establishing some preliminaries.

- Let \mathbb{K} denote a field.
- Fix a vector space V of dimension $d+1(d \geq 1)$.
- Let $\operatorname{Mat}_{d+1}(\mathbb{K})$ denote the \mathbb{K}-algebra of all $d+1$ by $d+1$ matrices with entries in \mathbb{K}.
- Let $\mathcal{A}=\operatorname{End}(V)$. Note that \mathcal{A} is isomorphic to $\operatorname{Mat}_{d+1}(\mathbb{K})$.

Tridiagonal matrices

- A square matrix is tridiagonal whenever each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal.
- A tridiagonal square matrix is irreducible whenever each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

Tridiagonal matrices

- A square matrix is tridiagonal whenever each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal.
- A tridiagonal square matrix is irreducible whenever each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

Example

$$
\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
1 & 0 & 3 & 0 \\
0 & -7 & 4 & 2 \\
0 & 0 & 6 & -9
\end{array}\right) \text { and }\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & -1 & 3 & 0 \\
0 & 8 & 6 & 5 \\
0 & 0 & 0 & 9
\end{array}\right)
$$

The matrix on the left is irreducible tridiagonal, but the one on the right is not.

Definition of a Leonard pair

Definition

Let V denote a vector space over \mathbb{K} with finite positive dimension. By a Leonard pair on V, we mean an ordered pair of linear transformations $A: V \rightarrow V$ and $A^{*}: V \rightarrow V$ that satisfy the following properties:
(1) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A^{*} is diagonal.
(2) There exists a basis for V with respect to which the matrix representing A^{*} is irreducible tridiagonal and the matrix representing A is diagonal.

Definition of a Leonard pair

Definition

Let V denote a vector space over \mathbb{K} with finite positive dimension. By a Leonard pair on V, we mean an ordered pair of linear transformations $A: V \rightarrow V$ and $A^{*}: V \rightarrow V$ that satisfy the following properties:
(1) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A^{*} is diagonal.
(2) There exists a basis for V with respect to which the matrix representing A^{*} is irreducible tridiagonal and the matrix representing A is diagonal.

Note

It is a common notational convention to use A^{*} to represent the conjugate-transpose of A. We are not using this convention.

Idempotents

When working with a Leonard pair, it is useful to consider a closely related object called a Leonard system. However, it is first necessary to establish the following definitions.

Idempotents

When working with a Leonard pair, it is useful to consider a closely related object called a Leonard system. However, it is first necessary to establish the following definitions.

Definition

By a system of mutually orthogonal idempotents in \mathcal{A}, we mean a sequence $\left\{E_{i}\right\}_{i=0}^{d}$ of elements in \mathcal{A} such that

$$
\begin{array}{cc}
E_{i} E_{j}=\delta_{i, j} E_{i} & (0 \leq i, j \leq d), \\
\operatorname{rank}\left(E_{i}\right)=1 & (0 \leq i \leq d) .
\end{array}
$$

Decompositions

Definition

By a decomposition of V, we mean a sequence $\left\{U_{i}\right\}_{i=0}^{d}$ consisting of one-dimensional subspaces of V such that

$$
\left.V=\sum_{i=0}^{d} U_{i} \quad \quad \text { (direct sum }\right)
$$

Decompositions

Definition

By a decomposition of V, we mean a sequence $\left\{U_{i}\right\}_{i=0}^{d}$ consisting of one-dimensional subspaces of V such that

$$
\left.V=\sum_{i=0}^{d} U_{i} \quad \text { (direct sum }\right)
$$

Given a decomposition, the projections onto the components are mutually orthogonal idempotents. Conversely, a decomposition can be defined from a set of mutually orthogonal idempotents.

Primitive idempotents

We now define the stronger notion of a primitive idempotent.

Primitive idempotents

We now define the stronger notion of a primitive idempotent.

Definition

Let A denote a multiplicity-free element of \mathcal{A} and let $\left\{\theta_{i}\right\}_{i=0}^{d}$ denote an ordering of the eigenvalues of A. For $0 \leq i \leq d$, let U_{i} denote the eigenspace of A for θ_{i}. Then $\left\{U_{i}\right\}_{i=0}^{d}$ is a decomposition of V; let $\left\{E_{i}\right\}_{i=0}^{d}$ denote the corresponding system of idempotents. We refer to E_{i} as the primitive idempotent of A corresponding to U_{i} (or θ_{i}).

Primitive idempotents

We now define the stronger notion of a primitive idempotent.

Definition

Let A denote a multiplicity-free element of \mathcal{A} and let $\left\{\theta_{i}\right\}_{i=0}^{d}$ denote an ordering of the eigenvalues of A. For $0 \leq i \leq d$, let U_{i} denote the eigenspace of A for θ_{i}. Then $\left\{U_{i}\right\}_{i=0}^{d}$ is a decomposition of V; let $\left\{E_{i}\right\}_{i=0}^{d}$ denote the corresponding system of idempotents. We refer to E_{i} as the primitive idempotent of A corresponding to U_{i} (or θ_{i}).

Note

$A=\sum_{i=0}^{d} \theta_{i} E_{i}$ and $A E_{i}=E_{i} A=\theta_{i} E_{i}$ for $0 \leq i \leq d$.

Leonard systems

Definition

By a Leonard system on V, we mean a sequence

$$
\left(A ;\left\{E_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)
$$

which satisfies the following properties.
(1) Each of A, A^{*} is a multiplicity-free element of \mathcal{A}.
(2) $\left\{E_{i}\right\}_{i=0}^{d}$ is an ordering of the primitive idempotents of A.
(3) $\left\{E_{i}^{*}\right\}_{i=0}^{d}$ is an ordering of the primitive idempotents of A^{*}.
(9) $E_{i}^{*} A E_{j}^{*}= \begin{cases}0, & \text { if }|i-j|>1 ; \\ \neq 0, & \text { if }|i-j|=1\end{cases}$

$$
(0 \leq i, j \leq d)
$$

(c) $E_{i} A^{*} E_{j}= \begin{cases}0, & \text { if }|i-j|>1 ; \\ \neq 0, & \text { if }|i-j|=1\end{cases}$

$$
(0 \leq i, j \leq d)
$$

Leonard systems (continued)

Note

A Leonard system gives rise to a Leonard pair and vice versa. Also, if A, A^{*} are a Leonard pair, then A and A^{*} are multiplicity-free.

Assumptions

For the remainder of this talk, the following assumptions will be in place:

Assumptions

For the remainder of this talk, the following assumptions will be in place:

Assumption

Let A be multiplicity-free, with primitive idempotents $\left\{E_{i}\right\}_{i=0}^{d}$ and eigenvalues $\left\{\theta_{i}\right\}_{i=0}^{d}$. Let $\left\{E_{i}^{*}\right\}_{i=0}^{d}$ denote a system of mutually orthogonal idempotents in \mathcal{A}. Assume that

$$
E_{i}^{*} A E_{j}^{*}=\left\{\begin{array}{ll}
0, & \text { if }|i-j|>1 ; \\
\neq 0, & \text { if }|i-j|=1
\end{array} \quad(0 \leq i, j \leq d)\right.
$$

Let $\left\{\theta_{i}^{*}\right\}_{i=0}^{d}$ denote scalars in \mathbb{K} and let $A^{*}=\sum_{i=0}^{d} \theta_{i}^{*} E_{i}^{*}$. To avoid trivialities, assume that $d \geq 1$.

Assumptions

For the remainder of this talk, the following assumptions will be in place:

Assumption

Let A be multiplicity-free, with primitive idempotents $\left\{E_{i}\right\}_{i=0}^{d}$ and eigenvalues $\left\{\theta_{i}\right\}_{i=0}^{d}$. Let $\left\{E_{i}^{*}\right\}_{i=0}^{d}$ denote a system of mutually orthogonal idempotents in \mathcal{A}. Assume that

$$
E_{i}^{*} A E_{j}^{*}=\left\{\begin{array}{ll}
0, & \text { if }|i-j|>1 ; \\
\neq 0, & \text { if } \quad|i-j|=1
\end{array} \quad(0 \leq i, j \leq d)\right.
$$

Let $\left\{\theta_{i}^{*}\right\}_{i=0}^{d}$ denote scalars in \mathbb{K} and let $A^{*}=\sum_{i=0}^{d} \theta_{i}^{*} E_{i}^{*}$. To avoid trivialities, assume that $d \geq 1$.

Facts

- E_{0}^{*}, A generate \mathcal{A}.
- There exists an antiautomorphism \dagger of \mathcal{A} that fixes E_{i}, A^{*}.

The graph Δ

We will now examine a set of conditions necessary to guarantee that $\left(A ;\left\{E_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ is a Leonard system. To do so, we first define a graph Δ.

The graph Δ

We will now examine a set of conditions necessary to guarantee that $\left(A ;\left\{E_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ is a Leonard system. To do so, we first define a graph Δ.

Definition

Let Δ be the graph with vertex set $\{0,1, \ldots, d\}$ such that two vertices i and j are adjacent if and only if $i \neq j$ and $E_{i} A^{*} E_{j} \neq 0$.

The graph Δ

We will now examine a set of conditions necessary to guarantee that $\left(A ;\left\{E_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ is a Leonard system. To do so, we first define a graph Δ.

Definition

Let Δ be the graph with vertex set $\{0,1, \ldots, d\}$ such that two vertices i and j are adjacent if and only if $i \neq j$ and $E_{i} A^{*} E_{j} \neq 0$.

Note

The graph Δ is finite and undirected, without loops or multiple edges. Also, Δ is well-defined because of the antiautomorphism \dagger.

Leonard systems and Δ

The following result establishes the relationship between Leonard systems and the graph Δ.

Leonard systems and Δ

The following result establishes the relationship between Leonard systems and the graph Δ.

Lemma

The sequence $\left(A ;\left\{E_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ is a Leonard system if and only if the graph Δ is a path such that vertices $i-1, i$ are adjacent for $1 \leq i \leq d$.

Leonard systems and Δ

The following result establishes the relationship between Leonard systems and the graph Δ.

Lemma

The sequence $\left(A ;\left\{E_{i}\right\}_{i=0}^{d} ; A^{*} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ is a Leonard system if and only if the graph Δ is a path such that vertices $i-1, i$ are adjacent for $1 \leq i \leq d$.

The "only if" statement and most of the details of the "if" statement follow from the definitions.

The bulk of the work in proving the "if" statement involves proving that A^{*} is multiplicity-free. This is accomplished by showing that the minimal polynomial for A^{*} has distinct roots and is degree $d+1$.

Q-polynomial properties

A few more definitions must be established in order to best state the main result.

Q-polynomial properties

A few more definitions must be established in order to best state the main result.

Definition

The given ordering $\left\{E_{i}\right\}_{i=0}^{d}$ of the primitive idempotents of A is said to be Q-polynomial whenever the equivalent conditions in the previous lemma hold.

Q-polynomial properties

A few more definitions must be established in order to best state the main result.

Definition

The given ordering $\left\{E_{i}\right\}_{i=0}^{d}$ of the primitive idempotents of A is said to be Q-polynomial whenever the equivalent conditions in the previous lemma hold.

Definition

Let (E, F) denote an ordered pair of distinct primitive idempotents for A. This pair will be called Q-polynomial whenever there exists a Q-polynomial ordering $\left\{E_{i}\right\}_{i=0}^{d}$ of the primitive idempotents of A such that $E=E_{0}$ and $F=E_{1}$.

Tails

Definition

Let $(E, F)=\left(E_{i}, E_{j}\right)$ denote an ordered pair of distinct primitive idempotents for A. This pair will be called a tail whenever the following occurs in Δ :
(1) i is adjacent to no vertex in Δ besides j;
(3) j is adjacent to at most one vertex in Δ besides i.

Tails

Definition

Let $(E, F)=\left(E_{i}, E_{j}\right)$ denote an ordered pair of distinct primitive idempotents for A. This pair will be called a tail whenever the following occurs in Δ :
(1) i is adjacent to no vertex in Δ besides j;
(O j is adjacent to at most one vertex in Δ besides i.

Tails

Definition

Let $(E, F)=\left(E_{i}, E_{j}\right)$ denote an ordered pair of distinct primitive idempotents for A. This pair will be called a tail whenever the following occurs in Δ :
(1) i is adjacent to no vertex in Δ besides j;
(O j is adjacent to at most one vertex in Δ besides i.

Lemma

Let (E, F) denote an ordered pair of distinct primitive idempotents for A. If (E, F) is Q-polynomial, then (E, F) is a tail.

[^0]
The main theorem

Theorem
Let (E, F) denote an ordered pair of distinct primitive idempotents for A. Then this pair is Q-polynomial if and only if the following hold.
(1) (E, F) is a tail.
(2) There exists $\beta \in \mathbb{K}$ such that $\theta_{i-1}^{*}-\beta \theta_{i}^{*}+\theta_{i+1}^{*}$ is independent of i for $1 \leq i \leq d-1$.
(3) $\theta_{0}^{*} \neq \theta_{i}^{*}$ for $1 \leq i \leq d$.

The main theorem

Theorem

Let (E, F) denote an ordered pair of distinct primitive idempotents for A. Then this pair is Q-polynomial if and only if the following hold.
(1) (E, F) is a tail.
(2) There exists $\beta \in \mathbb{K}$ such that $\theta_{i-1}^{*}-\beta \theta_{i}^{*}+\theta_{i+1}^{*}$ is independent of i for $1 \leq i \leq d-1$.
(3) $\theta_{0}^{*} \neq \theta_{i}^{*}$ for $1 \leq i \leq d$.

The "only if" statement follows mainly from the definitions, except for condition 2, which was shown by Terwilliger (2001).

The "if" statement can be proven by showing that conditions 1-3 imply that Δ is a path.

It is first necessary to show that Δ is connected.

Proof outline part 2

Each connected component of Δ corresponds to a subspace of V that is invariant under both A and A^{*}. So, if Δ is not connected then there exists a subspace U of V such that $U \neq 0, U \neq V, A U \subseteq U$, and $A^{*} U \subseteq U$.

An important consequence of condition 3 is that both A and A^{*} generate \mathcal{A}. Therefore, $\mathcal{A} U \subseteq U$. Because V is irreducible as an \mathcal{A}-module, either $U=0$ or $U=V$. This is a contradiction, so Δ is connected.

Proof outline part 3

Assume without loss of generality that $E_{0}=E$ and $E_{1}=F$. Now Δ looks like:

Proof outline part 3

Assume without loss of generality that $E_{0}=E$ and $E_{1}=F$. Now Δ looks like:

Proof outline part 3

Assume without loss of generality that $E_{0}=E$ and $E_{1}=F$. Now Δ looks like:

To show that Δ is a path, first let

$$
\gamma^{*}=\theta_{i-1}^{*}-\beta \theta_{i}^{*}+\theta_{i+1}^{*} \quad(1 \leq i \leq d-1)
$$

Proof outline part 4

Using the three-term recurrence (condition 2), it can be shown that the expression

$$
\theta_{i-1}^{* 2}-\beta \theta_{i-1}^{*} \theta_{i}^{*}+\theta_{i}^{* 2}-\gamma^{*}\left(\theta_{i-1}^{*}+\theta_{i}^{*}\right)
$$

is independent of i for $1 \leq i \leq d$. Call this expression δ^{*}.

Proof outline part 4

Using the three-term recurrence (condition 2), it can be shown that the expression

$$
\theta_{i-1}^{* 2}-\beta \theta_{i-1}^{*} \theta_{i}^{*}+\theta_{i}^{* 2}-\gamma^{*}\left(\theta_{i-1}^{*}+\theta_{i}^{*}\right)
$$

is independent of i for $1 \leq i \leq d$. Call this expression δ^{*}.
Next, it follows that

$$
0=\left[A^{*}, A^{* 2} A-\beta A^{*} A A^{*}+A A^{* 2}-\gamma^{*}\left(A A^{*}+A^{*} A\right)-\delta^{*} A\right],
$$

where $[x, y]=x y-y x$.

Proof outline part 4

Using the three-term recurrence (condition 2), it can be shown that the expression

$$
\theta_{i-1}^{* 2}-\beta \theta_{i-1}^{*} \theta_{i}^{*}+\theta_{i}^{* 2}-\gamma^{*}\left(\theta_{i-1}^{*}+\theta_{i}^{*}\right)
$$

is independent of i for $1 \leq i \leq d$. Call this expression δ^{*}.
Next, it follows that

$$
0=\left[A^{*}, A^{* 2} A-\beta A^{*} A A^{*}+A A^{* 2}-\gamma^{*}\left(A A^{*}+A^{*} A\right)-\delta^{*} A\right],
$$

where $[x, y]=x y-y x$.
This can be proven using the following facts:

- $I=\sum_{i=0}^{d} E_{i}^{*}$,
- $E_{i}^{*} A^{*}=\theta_{i}^{*} E_{i}^{*}$, and
- $A^{*} E_{j}^{*}=\theta_{j}^{*} E_{j}^{*}$.

Proof outline part 5

Suppose we are given vertices i and j in Δ that are path-length distance 3 and there exists a unique path (i, r, s, j) of length 3 connecting i and j. Then

$$
\theta_{i}-(\beta+1) \theta_{r}+(\beta+1) \theta_{s}-\theta_{j}=0
$$

Proof outline part 5

Suppose we are given vertices i and j in Δ that are path-length distance 3 and there exists a unique path (i, r, s, j) of length 3 connecting i and j. Then

$$
\theta_{i}-(\beta+1) \theta_{r}+(\beta+1) \theta_{s}-\theta_{j}=0
$$

To show this, expand the right-hand side of

$$
0=\left[A^{*}, A^{* 2} A-\beta A^{*} A A^{*}+A A^{* 2}-\gamma^{*}\left(A A^{*}+A^{*} A\right)-\delta^{*} A\right]
$$

and left and right multiply by E_{i} and E_{j}, respectively, and simplify.

Proof outline part 6

We can now easily show that Δ is a path by showing that every vertex in Δ is adjacent to at most two other vertices. Suppose there exists a vertex i in Δ that is adjacent to at least three other vertices. Without loss of generality, assume that this setup looks like this:

Proof outline part 6

We can now easily show that Δ is a path by showing that every vertex in Δ is adjacent to at most two other vertices. Suppose there exists a vertex i in Δ that is adjacent to at least three other vertices. Without loss of generality, assume that this setup looks like this:

Δ

Proof outline part 7

Given the previously-established algebraic facts,

$$
\theta_{i-2}-(\beta+1) \theta_{i-1}+(\beta+1) \theta_{i}-\theta_{j}=0
$$

and

$$
\theta_{i-2}-(\beta+1) \theta_{i-1}+(\beta+1) \theta_{i}-\theta_{j^{\prime}}=0
$$

Comparing these equations, we find $\theta_{j}=\theta_{j^{\prime}}$. Recall that $\left\{\theta_{h}\right\}_{h=0}^{d}$ are mutually distinct, so $j=j^{\prime}$. This is a contradiction and we have now shown that Δ is a path.

Proof outline part 7

Given the previously-established algebraic facts,

$$
\theta_{i-2}-(\beta+1) \theta_{i-1}+(\beta+1) \theta_{i}-\theta_{j}=0
$$

and

$$
\theta_{i-2}-(\beta+1) \theta_{i-1}+(\beta+1) \theta_{i}-\theta_{j^{\prime}}=0
$$

Comparing these equations, we find $\theta_{j}=\theta_{j^{\prime}}$. Recall that $\left\{\theta_{h}\right\}_{h=0}^{d}$ are mutually distinct, so $j=j^{\prime}$. This is a contradiction and we have now shown that Δ is a path.

The ordering of primitive idempotents E_{0}, E_{1}, \ldots induced by the path is Q-polynomial, so the pair $(E, F)=\left(E_{0}, E_{1}\right)$ is Q-polynomial.

Summary

We defined the closely related notions of Leonard pairs and Leonard systems. We then relaxed the definition of a Leonard system by considering a system based on two linear transformations, but which only satisfies half of the properties.

Summary

We defined the closely related notions of Leonard pairs and Leonard systems. We then relaxed the definition of a Leonard system by considering a system based on two linear transformations, but which only satisfies half of the properties.

We also defined a corresponding graph Δ and what must be true about Δ for the aforementioned system to be a Leonard system. This led to the definition of the Q-polynomial property.

Summary

We defined the closely related notions of Leonard pairs and Leonard systems. We then relaxed the definition of a Leonard system by considering a system based on two linear transformations, but which only satisfies half of the properties.

We also defined a corresponding graph Δ and what must be true about Δ for the aforementioned system to be a Leonard system. This led to the definition of the Q-polynomial property.

Finally, we defined a tail and characterized Leonard systems using this notion.

Summary

We defined the closely related notions of Leonard pairs and Leonard systems. We then relaxed the definition of a Leonard system by considering a system based on two linear transformations, but which only satisfies half of the properties.

We also defined a corresponding graph Δ and what must be true about Δ for the aforementioned system to be a Leonard system. This led to the definition of the Q-polynomial property.

Finally, we defined a tail and characterized Leonard systems using this notion.

THE END

[^0]: SYGN II, Rogla, Slovenia, August 1-6, 2010

