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Introduction

This talk is about Leonard pairs and Leonard systems, which are defined
using linear algebra.

Leonard pairs have applications to such areas as distance-regular graphs,
orthogonal polynomials, and representation theory.

In this talk, we characterize the Leonard pairs using the notion of a tail.
This notion was originally introduced in the context of distance-regular
graphs.

The main theorem can be viewed as an algebraic version of a theorem of
Jurǐsić, Terwilliger, and Zitnik proven for Q-polynomial distance-regular
graphs in 2009.
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Preliminaries

We begin by establishing some preliminaries.

Let K denote a field.

Fix a vector space V of dimension d + 1 (d ≥ 1).

Let Matd+1(K) denote the K-algebra of all d + 1 by d + 1 matrices
with entries in K.

Let A = End(V ). Note that A is isomorphic to Matd+1(K).
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Tridiagonal matrices

A square matrix is tridiagonal whenever each nonzero entry lies on
either the diagonal, the subdiagonal, or the superdiagonal.

A tridiagonal square matrix is irreducible whenever each entry on the
subdiagonal is nonzero and each entry on the superdiagonal is
nonzero.

Example 
2 −1 0 0
1 0 3 0
0 −7 4 2
0 0 6 −9

 and


1 0 0 0
2 −1 3 0
0 8 6 5
0 0 0 9


The matrix on the left is irreducible tridiagonal, but the one on the right is
not.
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Definition of a Leonard pair

Definition

Let V denote a vector space over K with finite positive dimension. By a
Leonard pair on V , we mean an ordered pair of linear transformations
A : V → V and A∗ : V → V that satisfy the following properties:

1 There exists a basis for V with respect to which the matrix
representing A is irreducible tridiagonal and the matrix representing
A∗ is diagonal.

2 There exists a basis for V with respect to which the matrix
representing A∗ is irreducible tridiagonal and the matrix representing
A is diagonal.

Note

It is a common notational convention to use A∗ to represent the
conjugate-transpose of A. We are not using this convention.
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Idempotents

When working with a Leonard pair, it is useful to consider a closely related
object called a Leonard system. However, it is first necessary to establish
the following definitions.

Definition

By a system of mutually orthogonal idempotents in A, we mean a
sequence {Ei}di=0 of elements in A such that

EiEj = δi ,jEi (0 ≤ i , j ≤ d),

rank(Ei ) = 1 (0 ≤ i ≤ d).
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Decompositions

Definition

By a decomposition of V , we mean a sequence {Ui}di=0 consisting of
one-dimensional subspaces of V such that

V =
d∑

i=0

Ui (direct sum).

Given a decomposition, the projections onto the components are mutually
orthogonal idempotents. Conversely, a decomposition can be defined from
a set of mutually orthogonal idempotents.
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Primitive idempotents

We now define the stronger notion of a primitive idempotent.

Definition

Let A denote a multiplicity-free element of A and let {θi}di=0 denote an
ordering of the eigenvalues of A. For 0 ≤ i ≤ d , let Ui denote the
eigenspace of A for θi . Then {Ui}di=0 is a decomposition of V ; let {Ei}di=0

denote the corresponding system of idempotents. We refer to Ei as the
primitive idempotent of A corresponding to Ui (or θi ).

Note

A =
∑d

i=0 θiEi and AEi = EiA = θiEi for 0 ≤ i ≤ d .
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Leonard systems

Definition

By a Leonard system on V , we mean a sequence

(A; {Ei}di=0; A∗; {E ∗i }di=0)

which satisfies the following properties.

1 Each of A,A∗ is a multiplicity-free element of A.

2 {Ei}di=0 is an ordering of the primitive idempotents of A.

3 {E ∗i }di=0 is an ordering of the primitive idempotents of A∗.

4 E ∗i AE ∗j =

{
0, if |i − j | > 1;

6= 0, if |i − j | = 1
(0 ≤ i , j ≤ d).

5 EiA
∗Ej =

{
0, if |i − j | > 1;

6= 0, if |i − j | = 1
(0 ≤ i , j ≤ d).
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Leonard systems (continued)

Note

A Leonard system gives rise to a Leonard pair and vice versa. Also, if
A,A∗ are a Leonard pair, then A and A∗ are multiplicity-free.
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Assumptions
For the remainder of this talk, the following assumptions will be in place:

Assumption

Let A be multiplicity-free, with primitive idempotents {Ei}di=0 and
eigenvalues {θi}di=0. Let {E ∗i }di=0 denote a system of mutually orthogonal
idempotents in A. Assume that

E ∗i AE ∗j =

{
0, if |i − j | > 1;

6= 0, if |i − j | = 1
(0 ≤ i , j ≤ d).

Let {θ∗i }di=0 denote scalars in K and let A∗ =
∑d

i=0 θ
∗
i E
∗
i . To avoid

trivialities, assume that d ≥ 1.

Facts

E ∗0 ,A generate A.

There exists an antiautomorphism † of A that fixes Ei ,A
∗.
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The graph ∆

We will now examine a set of conditions necessary to guarantee that
(A; {Ei}di=0; A∗; {E ∗i }di=0) is a Leonard system. To do so, we first define a
graph ∆.

Definition

Let ∆ be the graph with vertex set {0, 1, . . . , d} such that two vertices i
and j are adjacent if and only if i 6= j and EiA

∗Ej 6= 0.

Note

The graph ∆ is finite and undirected, without loops or multiple edges.
Also, ∆ is well-defined because of the antiautomorphism †.
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Leonard systems and ∆

The following result establishes the relationship between Leonard systems
and the graph ∆.

Lemma

The sequence (A; {Ei}di=0; A∗; {E ∗i }di=0) is a Leonard system if and only if
the graph ∆ is a path such that vertices i − 1, i are adjacent for 1 ≤ i ≤ d.

The “only if” statement and most of the details of the “if” statement
follow from the definitions.

The bulk of the work in proving the “if” statement involves proving that
A∗ is multiplicity-free. This is accomplished by showing that the minimal
polynomial for A∗ has distinct roots and is degree d + 1.
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Q-polynomial properties

A few more definitions must be established in order to best state the main
result.

Definition

The given ordering {Ei}di=0 of the primitive idempotents of A is said to be
Q-polynomial whenever the equivalent conditions in the previous lemma
hold.

Definition

Let (E ,F ) denote an ordered pair of distinct primitive idempotents for A.
This pair will be called Q-polynomial whenever there exists a
Q-polynomial ordering {Ei}di=0 of the primitive idempotents of A such
that E = E0 and F = E1.
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Tails

Definition

Let (E ,F ) = (Ei ,Ej) denote an ordered pair of distinct primitive
idempotents for A. This pair will be called a tail whenever the following
occurs in ∆:

1 i is adjacent to no vertex in ∆ besides j ;

2 j is adjacent to at most one vertex in ∆ besides i .

i j

∆

Lemma

Let (E ,F ) denote an ordered pair of distinct primitive idempotents for A.
If (E ,F ) is Q-polynomial, then (E ,F ) is a tail.
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The main theorem

Theorem

Let (E ,F ) denote an ordered pair of distinct primitive idempotents for A.
Then this pair is Q-polynomial if and only if the following hold.

1 (E ,F ) is a tail.

2 There exists β ∈ K such that θ∗i−1 − βθ∗i + θ∗i+1 is independent of i
for 1 ≤ i ≤ d − 1.

3 θ∗0 6= θ∗i for 1 ≤ i ≤ d.

The “only if” statement follows mainly from the definitions, except for
condition 2, which was shown by Terwilliger (2001).

The “if” statement can be proven by showing that conditions 1–3 imply
that ∆ is a path.

It is first necessary to show that ∆ is connected.
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Proof outline part 2

Each connected component of ∆ corresponds to a subspace of V that is
invariant under both A and A∗. So, if ∆ is not connected then there exists
a subspace U of V such that U 6= 0, U 6= V , AU ⊆ U, and A∗U ⊆ U.

An important consequence of condition 3 is that both A and A∗ generate
A. Therefore, AU ⊆ U. Because V is irreducible as an A-module, either
U = 0 or U = V . This is a contradiction, so ∆ is connected.
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Proof outline part 3

Assume without loss of generality that E0 = E and E1 = F . Now ∆ looks
like:

0 1

∆

To show that ∆ is a path, first let

γ∗ = θ∗i−1 − βθ∗i + θ∗i+1 (1 ≤ i ≤ d − 1)
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Proof outline part 4

Using the three-term recurrence (condition 2), it can be shown that the
expression

θ∗2i−1 − βθ∗i−1θ
∗
i + θ∗2i − γ∗(θ∗i−1 + θ∗i )

is independent of i for 1 ≤ i ≤ d . Call this expression δ∗.

Next, it follows that

0 = [A∗,A∗2A− βA∗AA∗ + AA∗2 − γ∗(AA∗ + A∗A)− δ∗A],

where [x , y ] = xy − yx .

This can be proven using the following facts:

I =
∑d

i=0 E ∗i ,

E ∗i A∗ = θ∗i E
∗
i , and

A∗E ∗j = θ∗j E
∗
j .
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Proof outline part 5

Suppose we are given vertices i and j in ∆ that are path-length distance 3
and there exists a unique path (i , r , s, j) of length 3 connecting i and j .
Then

θi − (β + 1)θr + (β + 1)θs − θj = 0.

To show this, expand the right-hand side of

0 = [A∗,A∗2A− βA∗AA∗ + AA∗2 − γ∗(AA∗ + A∗A)− δ∗A]

and left and right multiply by Ei and Ej , respectively, and simplify.

SYGN II, Rogla, Slovenia, August 1–6, 2010



Proof outline part 5

Suppose we are given vertices i and j in ∆ that are path-length distance 3
and there exists a unique path (i , r , s, j) of length 3 connecting i and j .
Then

θi − (β + 1)θr + (β + 1)θs − θj = 0.

To show this, expand the right-hand side of

0 = [A∗,A∗2A− βA∗AA∗ + AA∗2 − γ∗(AA∗ + A∗A)− δ∗A]

and left and right multiply by Ei and Ej , respectively, and simplify.

SYGN II, Rogla, Slovenia, August 1–6, 2010



Proof outline part 6

We can now easily show that ∆ is a path by showing that every vertex in
∆ is adjacent to at most two other vertices. Suppose there exists a vertex
i in ∆ that is adjacent to at least three other vertices. Without loss of
generality, assume that this setup looks like this:

0 1 2 i

j

j ′

∆
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Proof outline part 7

Given the previously-established algebraic facts,

θi−2 − (β + 1)θi−1 + (β + 1)θi − θj = 0

and
θi−2 − (β + 1)θi−1 + (β + 1)θi − θj ′ = 0.

Comparing these equations, we find θj = θj ′ . Recall that {θh}dh=0 are
mutually distinct, so j = j ′. This is a contradiction and we have now
shown that ∆ is a path.

The ordering of primitive idempotents E0,E1, . . . induced by the path is
Q-polynomial, so the pair (E ,F ) = (E0,E1) is Q-polynomial.
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Summary

We defined the closely related notions of Leonard pairs and Leonard
systems. We then relaxed the definition of a Leonard system by
considering a system based on two linear transformations, but which only
satisfies half of the properties.

We also defined a corresponding graph ∆ and what must be true about ∆
for the aforementioned system to be a Leonard system. This led to the
definition of the Q-polynomial property.

Finally, we defined a tail and characterized Leonard systems using this
notion.

THE END
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