Locally distance transitive graphs

Michael Giudici

The University of Western Australia
Joint work with Alice Devillers, Cai Heng Li, Cheryl Praeger

Symmetry of graphs and networks II
Rogla, Slovenia 2010

s-arc transitive graphs

An s-arc in a graph is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that $v_{i} \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

s-arc transitive graphs

An s-arc in a graph is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that $v_{i} \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

A graph Γ is s-arc transitive if $\operatorname{Aut}(\Gamma)$ is transitive on the set of s-arcs.

s-arc transitive graphs

An s-arc in a graph is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that $v_{i} \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

A graph Γ is s-arc transitive if $\operatorname{Aut}(\Gamma)$ is transitive on the set of s-arcs.

s-arc transitive graphs

An s-arc in a graph is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that $v_{i} \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

A graph Γ is s-arc transitive if $\operatorname{Aut}(\Gamma)$ is transitive on the set of s-arcs.

s-arc transitive graphs

An s-arc in a graph is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that $v_{i} \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

A graph Γ is s-arc transitive if $\operatorname{Aut}(\Gamma)$ is transitive on the set of s-arcs.

s-arc transitive graphs

An s-arc in a graph is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that $v_{i} \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

A graph Γ is s-arc transitive if $\operatorname{Aut}(\Gamma)$ is transitive on the set of s-arcs.

s-arc transitive graphs

An s-arc in a graph is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that $v_{i} \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

A graph Γ is s-arc transitive if $\operatorname{Aut}(\Gamma)$ is transitive on the set of s-arcs.

s-arc transitive graphs

An s-arc in a graph is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that $v_{i} \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

A graph Γ is s-arc transitive if $\operatorname{Aut}(\Gamma)$ is transitive on the set of s-arcs.

K_{4} is 2-arc transitive but not 3-arc transitive.

s-distance transitive graphs

Γ is called s-distance transitive if for each $i \leq s, \operatorname{Aut}(\Gamma)$ is transitive on the set $\{(v, w) \mid d(v, w)=i\}$.

s-arc transitive vs s-distance transitive

If $s \leq\left\lfloor\frac{g-1}{2}\right\rfloor$, where g is the girth, then Γ is s-distance transitive if and only if Γ is s-arc transitive.

s-arc transitive vs s-distance transitive

If $s \leq\left\lfloor\frac{g-1}{2}\right\rfloor$, where g is the girth, then Γ is s-distance transitive if and only if Γ is s-arc transitive.

1-distance transitive $=1$-arc transitive

s-arc transitive vs s-distance transitive

If $s \leq\left\lfloor\frac{g-1}{2}\right\rfloor$, where g is the girth, then Γ is s-distance transitive if and only if Γ is s-arc transitive.

1-distance transitive $=1$-arc transitive
The Hall-Janko graph is 2-distance transitive but not 2-arc transitive.

s-arc transitive vs s-distance transitive

If $s \leq\left\lfloor\frac{g-1}{2}\right\rfloor$, where g is the girth, then Γ is s-distance transitive if and only if Γ is s-arc transitive.

1-distance transitive $=1$-arc transitive
The Hall-Janko graph is 2-distance transitive but not 2-arc transitive.

The point graph of the $G_{2}(q)$ hexagon is 3-distance transitive but not 2-arc transitive.

Distance transitive graphs

If Γ is s-distance transitive for all $s \leq \operatorname{diam}(\Gamma)$ then Γ is distance transitive.

Distance transitive graphs

If Γ is s-distance transitive for all $s \leq \operatorname{diam}(\Gamma)$ then Γ is distance transitive.

Distance transitive graphs have the following regularity property.

Distance transitive graphs

If Γ is s-distance transitive for all $s \leq \operatorname{diam}(\Gamma)$ then Γ is distance transitive.

Distance transitive graphs have the following regularity property.

Such graphs have been well studied and a classification is close to completion.

Distance transitive graphs

If Γ is s-distance transitive for all $s \leq \operatorname{diam}(\Gamma)$ then Γ is distance transitive.

Distance transitive graphs have the following regularity property.

Such graphs have been well studied and a classification is close to completion.

For s-distance transitive graphs the parameters are only well defined out to distance s.

Local symmetry

Γ is called locally s-arc transitive if for each vertex $v, \operatorname{Aut}(\Gamma)_{v}$ acts transitively on the set of s-arcs starting at v.

Local symmetry

Γ is called locally s-arc transitive if for each vertex $v, \operatorname{Aut}(\Gamma)_{v}$ acts transitively on the set of s-arcs starting at v.
Γ is called locally s-distance transitive if $s \leq \operatorname{diam}(\Gamma)$, and for each vertex v and $i \leq s, \operatorname{Aut}(\Gamma)_{v}$ acts transitively on $\Gamma_{i}(v)$.

Local symmetry

Γ is called locally s-arc transitive if for each vertex $v, \operatorname{Aut}(\Gamma)_{v}$ acts transitively on the set of s-arcs starting at v.
Γ is called locally s-distance transitive if $s \leq \operatorname{diam}(\Gamma)$, and for each vertex v and $i \leq s, \operatorname{Aut}(\Gamma)_{v}$ acts transitively on $\Gamma_{i}(v)$.

Local symmetry

Γ is called locally s-arc transitive if for each vertex $v, \operatorname{Aut}(\Gamma)_{v}$ acts transitively on the set of s-arcs starting at v.
Γ is called locally s-distance transitive if $s \leq \operatorname{diam}(\Gamma)$, and for each vertex v and $i \leq s, \operatorname{Aut}(\Gamma)_{v}$ acts transitively on $\Gamma_{i}(v)$.

If $s \leq\left\lfloor\frac{g-1}{2}\right\rfloor$, where g is the girth, then Γ is locally s-distance transitive if and only if Γ is locally s-arc transitive.

Local symmetry II

A locally s-distance transitive connected graph is edge-transitive and so either

- Γ is vertex-transitive and s-distance-transitive
- Aut(Γ) has two orbits on vertices and Γ is bipartite.

Local symmetry II

A locally s-distance transitive connected graph is edge-transitive and so either

- Γ is vertex-transitive and s-distance-transitive
- Aut(Г) has two orbits on vertices and Γ is bipartite.
Γ is locally distance transitive if it is locally diam(Γ)-distance transitive.

Local symmetry II

A locally s-distance transitive connected graph is edge-transitive and so either

- Γ is vertex-transitive and s-distance-transitive
- Aut (Γ) has two orbits on vertices and Γ is bipartite.
Γ is locally distance transitive if it is locally diam(Γ)-distance transitive.

For $G \leqslant \operatorname{Aut}(\Gamma)$ we can also refer to locally (G, s)-distance transitive.

Locally distance transitive graphs

Vertex-intransitive case

The distance parameters for a vertex only depend on the part of the bipartition it belongs to.
eg line-plane incidence graph of a projective space.

Locally distance transitive graphs

Vertex-intransitive case

The distance parameters for a vertex only depend on the part of the bipartition it belongs to.
eg line-plane incidence graph of a projective space.
Shawe-Taylor (1987)

- The distance 2 graph has two connected components, each of which is distance transitive.
- In the nonregular case
- at least one is primitive.
- if both primitive then the group is almost simple.

Locally distance transitive graphs

Vertex-intransitive case

The distance parameters for a vertex only depend on the part of the bipartition it belongs to.
eg line-plane incidence graph of a projective space.
Shawe-Taylor (1987)

- The distance 2 graph has two connected components, each of which is distance transitive.
- In the nonregular case
- at least one is primitive.
- if both primitive then the group is almost simple.

Uses work of Smith, Praeger-Saxl-Yokoyama on distance transitive graphs.

Quotients

Let \mathcal{B} be a partition of $V \Gamma$
Quotient graph $\Gamma_{\mathcal{B}}$: vertex set: parts of \mathcal{B}
adjacency: $\quad B_{1} \sim B_{2}$ if there exists $v_{1} \in B_{1}$ and $v_{2} \in B_{2}$ such that $v_{1} \sim v_{2}$.

Quotients

Let \mathcal{B} be a partition of $V \Gamma$
Quotient graph $\Gamma_{\mathcal{B}}$:
vertex set: parts of \mathcal{B}
adjacency: $\quad B_{1} \sim B_{2}$ if there exists $v_{1} \in B_{1}$ and $v_{2} \in B_{2}$ such that $v_{1} \sim v_{2}$.

Quotients

Let \mathcal{B} be a partition of $V \Gamma$
Quotient graph $\Gamma_{\mathcal{B}}$:
vertex set: parts of \mathcal{B}
adjacency: $\quad B_{1} \sim B_{2}$ if there exists $v_{1} \in B_{1}$ and $v_{2} \in B_{2}$ such that $v_{1} \sim v_{2}$.
Γ is a cover of $\Gamma_{\mathcal{B}}$ if:

Quotients

Let \mathcal{B} be a partition of $V \Gamma$
Quotient graph $\Gamma_{\mathcal{B}}$:
vertex set: parts of \mathcal{B}
adjacency: $\quad B_{1} \sim B_{2}$ if there exists $v_{1} \in B_{1}$ and $v_{2} \in B_{2}$ such that $v_{1} \sim v_{2}$.
Γ is a cover of $\Gamma_{\mathcal{B}}$ if:

Normal Quotients

Look at normal quotients, that is, where \mathcal{B} is the set of orbits of some normal subgroup N of $G \leqslant \operatorname{Aut}(\Gamma)$.

Denote by Γ_{N}.

Normal Quotients

Look at normal quotients, that is, where \mathcal{B} is the set of orbits of some normal subgroup N of $G \leqslant \operatorname{Aut}(\Gamma)$.

Denote by Γ_{N}.
This has proved a fruitful avenue of investigation for s-arc transitive (Praeger) and locally s-arc transitive graphs (Giudici-Li-Praeger).

Normal Quotients

Look at normal quotients, that is, where \mathcal{B} is the set of orbits of some normal subgroup N of $G \leqslant \operatorname{Aut}(\Gamma)$.

Denote by Γ_{N}.
This has proved a fruitful avenue of investigation for s-arc transitive (Praeger) and locally s-arc transitive graphs (Giudici-Li-Praeger).
For each family, can reduce to a graph in the family that has no meaningful quotients (basic) and then study the basic graphs in the family.

This usually involves knowledge of quasiprimitive groups.

Quotients of locally s-distance transitive graphs?

Paths in Γ may decrease in length in Γ_{N} and indeed Γ_{N} may have smaller diameter than Γ.

The family $L D T(s)$

Let $\operatorname{LDT}(s)$ be the set of graphs Γ that are locally s^{\prime}-distance transitive where $s^{\prime}=\min \{s, \operatorname{diam}(\Gamma)\}$.

The family $L D T(s)$

Let $\operatorname{LDT}(s)$ be the set of graphs Γ that are locally s^{\prime}-distance transitive where $s^{\prime}=\min \{s, \operatorname{diam}(\Gamma)\}$.

Theorem (Devillers-Giudici-Li-Praeger)
Let $s \geq 2$ and let $\Gamma \in L D T(s)$ relative to G and let $N \triangleleft G$ with at least three orbits on vertices. Then one of the following holds:

- $\Gamma=K_{m[b]}$,
- Γ_{N} is a star,
- $\Gamma_{N} \in L D T(s)$ relative to G / N and Γ is a cover of Γ_{N}.

Basic and degenerate graphs

By a degenerate graph we mean K_{1}, K_{2} or a star $K_{1, m}$.
Γ is a basic locally (G, s)-distance transitive graph if each only normal quotient is one of these degenerate graphs.

Basic graphs

There are four types of basic locally (G, s)-distance transitive graphs to study:

- G acts quasiprimitively on $V \Gamma$;
- Γ is bipartite, G is biquasiprimitive on $V \Gamma$ and G^{+}acts faithfully on each orbit;
- Γ is bipartite, $G=G^{+}$acts faithfully and quasiprimitively on each orbit;
- Γ is bipartite, $G=G^{+}$acts faithfully on both orbits and quasiprimitively on only one.

Basic graphs

There are four types of basic locally (G, s)-distance transitive graphs to study:

- G acts quasiprimitively on $V \Gamma$;
- Γ is bipartite, G is biquasiprimitive on $V \Gamma$ and G^{+}acts faithfully on each orbit;
- Γ is bipartite, $G=G^{+}$acts faithfully and quasiprimitively on each orbit;
- Γ is bipartite, $G=G^{+}$acts faithfully on both orbits and quasiprimitively on only one.

These are currently under investigation.

The biquasiprimitive case

A transitive permutation group G is called biquasiprimitive if every nontrivial normal subgroup has at most two orbits and there is a normal subgroup with two orbits.

The biquasiprimitive case

A transitive permutation group G is called biquasiprimitive if every nontrivial normal subgroup has at most two orbits and there is a normal subgroup with two orbits.

The group G has an index 2 subgroup G^{+}that is the stabiliser of the two bipartite halves.
G^{+}may or may not act quasiprimitively on each orbit.

The biquasiprimitive case

A transitive permutation group G is called biquasiprimitive if every nontrivial normal subgroup has at most two orbits and there is a normal subgroup with two orbits.

The group G has an index 2 subgroup G^{+}that is the stabiliser of the two bipartite halves.
G^{+}may or may not act quasiprimitively on each orbit.
If G^{+}is not quasiprimitive on each orbit then can take normal quotients with respect to G^{+}
ie, Γ is G-basic but not G^{+}-basic.

Coset graphs

- G a group with subgroup H,
- $g \in G \backslash H$ such that $g^{2} \in H$.

We can construct the graph $\operatorname{Cos}(\mathrm{G}, \mathrm{H}, \mathrm{HgH})$ with vertex set: cosets of H in G adjacency: $H x \sim H y$ if and only if $x y^{-1} \in H g H$

Coset graphs

- G a group with subgroup H,
- $g \in G \backslash H$ such that $g^{2} \in H$.

We can construct the graph $\operatorname{Cos}(\mathrm{G}, \mathrm{H}, \mathrm{HgH})$ with vertex set: cosets of H in G adjacency: $\quad H x \sim H y$ if and only if $x y^{-1} \in H g H$
G acts by right multiplication on vertices and is transitive on $A \Gamma$.

Coset graphs

- G a group with subgroup H,
- $g \in G \backslash H$ such that $g^{2} \in H$.

We can construct the graph $\operatorname{Cos}(\mathrm{G}, \mathrm{H}, \mathrm{HgH})$ with vertex set: cosets of H in G adjacency: $\quad H x \sim H y$ if and only if $x y^{-1} \in H g H$
G acts by right multiplication on vertices and is transitive on $A \Gamma$.
Any arc-transitive graph 「 can be constructed in this way:

- $G=\operatorname{Aut}(\Gamma), H=G_{v}$
- g an element interchanging v and w, where $\{v, w\} \in E \Gamma$.

An example

Let $T=\operatorname{PSL}\left(2,2^{f}\right), f \geq 3$ odd and $G=T \imath S_{2}$.

An example

Let $T=\operatorname{PSL}\left(2,2^{f}\right), f \geq 3$ odd and $\left.G=T\right\} S_{2}$.
T has a subgroup $L=\langle a, b\rangle \cong S_{3}$ with $|a|=3,|b|=2$.
Let $H=\langle(a, a),(b, b)\rangle \leqslant G$.

An example

Let $T=\operatorname{PSL}\left(2,2^{f}\right), f \geq 3$ odd and $G=T \imath S_{2}$.
T has a subgroup $L=\langle a, b\rangle \cong S_{3}$ with $|a|=3,|b|=2$.
Let $H=\langle(a, a),(b, b)\rangle \leqslant G$.
Now choose $u \neq b$ in the Sylow 2-subgroup of T containing b.
Let $g=(u, u b) \sigma \in G$.
Define $\Gamma=\operatorname{Cos}(G, L, L g L)$.

An example II

Γ is a ($G, 2$)-arc transitive cubic graph (also ($G, 2$)-distance transitive).

An example II

Γ is a ($G, 2$)-arc transitive cubic graph (also ($G, 2$)-distance transitive).
The only nontrivial proper normal subgroup of G is T^{2}, which has two orbits on vertices.

Hence Γ is bipartite and G is biquasiprimitive.

An example II

Γ is a ($G, 2$)-arc transitive cubic graph (also ($G, 2$)-distance transitive).
The only nontrivial proper normal subgroup of G is T^{2}, which has two orbits on vertices.

Hence Γ is bipartite and G is biquasiprimitive.
G^{+}is not quasiprimitive on each orbit as T^{2} has intransitive normal subgroups $T \times 1$ and $1 \times T$.

An example II

Γ is a ($G, 2$)-arc transitive cubic graph (also ($G, 2$)-distance transitive).
The only nontrivial proper normal subgroup of G is T^{2}, which has two orbits on vertices.

Hence Γ is bipartite and G is biquasiprimitive.
G^{+}is not quasiprimitive on each orbit as T^{2} has intransitive normal subgroups $T \times 1$ and $1 \times T$.
Γ is a cover of a locally $(T, 2)$-arc transitive graph.

