Michael Giudici

The University of Western Australia Joint work with Alice Devillers, Cai Heng Li, Cheryl Praeger

> Symmetry of graphs and networks II Rogla, Slovenia 2010

An *s*-arc in a graph is an (s + 1)-tuple (v_0, v_1, \ldots, v_s) of vertices such that $v_i \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

An *s*-arc in a graph is an (s + 1)-tuple (v_0, v_1, \ldots, v_s) of vertices such that $v_i \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

An *s*-arc in a graph is an (s + 1)-tuple (v_0, v_1, \ldots, v_s) of vertices such that $v_i \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

An *s*-arc in a graph is an (s + 1)-tuple (v_0, v_1, \ldots, v_s) of vertices such that $v_i \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

An *s*-arc in a graph is an (s + 1)-tuple (v_0, v_1, \ldots, v_s) of vertices such that $v_i \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

An *s*-arc in a graph is an (s + 1)-tuple (v_0, v_1, \ldots, v_s) of vertices such that $v_i \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

An *s*-arc in a graph is an (s + 1)-tuple (v_0, v_1, \ldots, v_s) of vertices such that $v_i \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

An *s*-arc in a graph is an (s + 1)-tuple (v_0, v_1, \ldots, v_s) of vertices such that $v_i \sim v_{i+1}$ and $v_{i-1} \neq v_{i+1}$.

A graph Γ is *s*-arc transitive if Aut(Γ) is transitive on the set of *s*-arcs.

 K_4 is 2-arc transitive but not 3-arc transitive.

Γ is called *s*-distance transitive if for each $i \le s$, Aut(Γ) is transitive on the set $\{(v, w) \mid d(v, w) = i\}$.

If $s \leq \lfloor \frac{g-1}{2} \rfloor$, where g is the girth, then Γ is s-distance transitive if and only if Γ is s-arc transitive.

If $s \leq \lfloor \frac{g-1}{2} \rfloor$, where g is the girth, then Γ is s-distance transitive if and only if Γ is s-arc transitive.

1-distance transitive = 1-arc transitive

If $s \leq \lfloor \frac{g-1}{2} \rfloor$, where g is the girth, then Γ is s-distance transitive if and only if Γ is s-arc transitive.

1-distance transitive = 1-arc transitive

The Hall-Janko graph is 2-distance transitive but not 2-arc transitive.

If $s \leq \lfloor \frac{g-1}{2} \rfloor$, where g is the girth, then Γ is s-distance transitive if and only if Γ is s-arc transitive.

1-distance transitive = 1-arc transitive

The Hall-Janko graph is 2-distance transitive but not 2-arc transitive.

The point graph of the $G_2(q)$ hexagon is 3-distance transitive but not 2-arc transitive.

If Γ is s-distance transitive for all $s \leq \operatorname{diam}(\Gamma)$ then Γ is distance transitive.

If Γ is s-distance transitive for all $s \leq \operatorname{diam}(\Gamma)$ then Γ is distance transitive.

Distance transitive graphs have the following regularity property.

If Γ is s-distance transitive for all $s \leq \operatorname{diam}(\Gamma)$ then Γ is distance transitive.

Distance transitive graphs have the following regularity property.

Such graphs have been well studied and a classification is close to completion.

If Γ is s-distance transitive for all $s \leq \operatorname{diam}(\Gamma)$ then Γ is distance transitive.

Distance transitive graphs have the following regularity property.

Such graphs have been well studied and a classification is close to completion.

For s-distance transitive graphs the parameters are only well defined out to distance s.

 Γ is called locally *s*-arc transitive if for each vertex *v*, Aut(Γ)_{*v*} acts transitively on the set of *s*-arcs starting at *v*.

 Γ is called locally *s*-arc transitive if for each vertex *v*, Aut(Γ)_{*v*} acts transitively on the set of *s*-arcs starting at *v*.

 Γ is called locally *s*-distance transitive if $s \leq \text{diam}(\Gamma)$, and for each vertex v and $i \leq s$, $\text{Aut}(\Gamma)_v$ acts transitively on $\Gamma_i(v)$.

 Γ is called locally *s*-arc transitive if for each vertex *v*, Aut(Γ)_{*v*} acts transitively on the set of *s*-arcs starting at *v*.

 Γ is called locally *s*-distance transitive if $s \leq \text{diam}(\Gamma)$, and for each vertex v and $i \leq s$, $\text{Aut}(\Gamma)_v$ acts transitively on $\Gamma_i(v)$.

 Γ is called locally *s*-arc transitive if for each vertex *v*, Aut(Γ)_{*v*} acts transitively on the set of *s*-arcs starting at *v*.

 Γ is called locally *s*-distance transitive if $s \leq \text{diam}(\Gamma)$, and for each vertex v and $i \leq s$, $\text{Aut}(\Gamma)_v$ acts transitively on $\Gamma_i(v)$.

If $s \leq \lfloor \frac{g-1}{2} \rfloor$, where g is the girth, then Γ is locally s-distance transitive if and only if Γ is locally s-arc transitive.

A locally s-distance transitive connected graph is edge-transitive and so either

- Γ is vertex-transitive and *s*-distance-transitive
- Aut(Γ) has two orbits on vertices and Γ is bipartite.

A locally s-distance transitive connected graph is edge-transitive and so either

- Γ is vertex-transitive and *s*-distance-transitive
- Aut(Γ) has two orbits on vertices and Γ is bipartite.

 Γ is locally distance transitive if it is locally diam(Γ)-distance transitive.

A locally s-distance transitive connected graph is edge-transitive and so either

- Γ is vertex-transitive and *s*-distance-transitive
- Aut(Γ) has two orbits on vertices and Γ is bipartite.

 Γ is locally distance transitive if it is locally diam(Γ)-distance transitive.

For $G \leq Aut(\Gamma)$ we can also refer to locally (G, s)-distance transitive.

Vertex-intransitive case

The distance parameters for a vertex only depend on the part of the bipartition it belongs to.

eg line-plane incidence graph of a projective space.

Vertex-intransitive case

The distance parameters for a vertex only depend on the part of the bipartition it belongs to.

eg line-plane incidence graph of a projective space.

Shawe-Taylor (1987)

- The distance 2 graph has two connected components, each of which is distance transitive.
- In the nonregular case
 - at least one is primitive.
 - if both primitive then the group is almost simple.

Vertex-intransitive case

The distance parameters for a vertex only depend on the part of the bipartition it belongs to.

eg line-plane incidence graph of a projective space.

Shawe-Taylor (1987)

- The distance 2 graph has two connected components, each of which is distance transitive.
- In the nonregular case
 - at least one is primitive.
 - if both primitive then the group is almost simple.

Uses work of Smith, Praeger-Saxl-Yokoyama on distance transitive graphs.

Let ${\mathcal B}$ be a partition of $V\Gamma$

Quotient graph $\Gamma_{\mathcal{B}}$:

- vertex set: parts of ${\cal B}$
- adjacency: $B_1 \sim B_2$ if there exists $v_1 \in B_1$ and $v_2 \in B_2$ such that $v_1 \sim v_2$.

Normal Quotients

Look at normal quotients, that is, where \mathcal{B} is the set of orbits of some normal subgroup N of $G \leq \operatorname{Aut}(\Gamma)$.

Denote by Γ_N .

Normal Quotients

Look at normal quotients, that is, where \mathcal{B} is the set of orbits of some normal subgroup N of $G \leq \operatorname{Aut}(\Gamma)$.

Denote by Γ_N .

This has proved a fruitful avenue of investigation for *s*-arc transitive (Praeger) and locally *s*-arc transitive graphs (Giudici-Li-Praeger).

Normal Quotients

Look at normal quotients, that is, where \mathcal{B} is the set of orbits of some normal subgroup N of $G \leq \operatorname{Aut}(\Gamma)$.

Denote by Γ_N .

This has proved a fruitful avenue of investigation for *s*-arc transitive (Praeger) and locally *s*-arc transitive graphs (Giudici-Li-Praeger).

For each family, can reduce to a graph in the family that has no meaningful quotients (basic) and then study the basic graphs in the family.

This usually involves knowledge of quasiprimitive groups.

Quotients of locally s-distance transitive graphs?

Paths in Γ may decrease in length in Γ_N and indeed Γ_N may have smaller diameter than $\Gamma.$

The family LDT(s)

Let LDT(s) be the set of graphs Γ that are locally s'-distance transitive where $s' = \min\{s, \operatorname{diam}(\Gamma)\}$.

The family LDT(s)

Let LDT(s) be the set of graphs Γ that are locally s'-distance transitive where $s' = \min\{s, \operatorname{diam}(\Gamma)\}$.

Theorem (Devillers-Giudici-Li-Praeger)

Let $s \ge 2$ and let $\Gamma \in LDT(s)$ relative to G and let $N \lhd G$ with at least three orbits on vertices. Then one of the following holds:

- $\Gamma = K_{m[b]}$,
- Γ_N is a star,
- $\Gamma_N \in LDT(s)$ relative to G/N and Γ is a cover of Γ_N .

By a degenerate graph we mean K_1 , K_2 or a star $K_{1,m}$.

 Γ is a basic locally (G, s)-distance transitive graph if each only normal quotient is one of these degenerate graphs.

Basic graphs

There are four types of basic locally (G, s)-distance transitive graphs to study:

- G acts quasiprimitively on $V\Gamma$;
- Γ is bipartite, G is biquasiprimitive on $V\Gamma$ and G^+ acts faithfully on each orbit;
- Γ is bipartite, $G = G^+$ acts faithfully and quasiprimitively on each orbit;
- Γ is bipartite, $G = G^+$ acts faithfully on both orbits and quasiprimitively on only one.

Basic graphs

There are four types of basic locally (G, s)-distance transitive graphs to study:

- G acts quasiprimitively on $V\Gamma$;
- Γ is bipartite, G is biquasiprimitive on $V\Gamma$ and G^+ acts faithfully on each orbit;
- Γ is bipartite, $G = G^+$ acts faithfully and quasiprimitively on each orbit;
- Γ is bipartite, $G = G^+$ acts faithfully on both orbits and quasiprimitively on only one.

These are currently under investigation.

The biquasiprimitive case

A transitive permutation group G is called **biquasiprimitive** if every nontrivial normal subgroup has at most two orbits and there is a normal subgroup with two orbits.

The biquasiprimitive case

A transitive permutation group G is called **biquasiprimitive** if every nontrivial normal subgroup has at most two orbits and there is a normal subgroup with two orbits.

The group G has an index 2 subgroup G^+ that is the stabiliser of the two bipartite halves.

 G^+ may or may not act quasiprimitively on each orbit.

The biquasiprimitive case

A transitive permutation group G is called **biquasiprimitive** if every nontrivial normal subgroup has at most two orbits and there is a normal subgroup with two orbits.

The group G has an index 2 subgroup G^+ that is the stabiliser of the two bipartite halves.

 G^+ may or may not act quasiprimitively on each orbit.

If G^+ is not quasiprimitive on each orbit then can take normal quotients with respect to G^+

ie, Γ is *G*-basic but not *G*⁺-basic.

Coset graphs

- G a group with subgroup H,
- $g \in G \setminus H$ such that $g^2 \in H$.

We can construct the graph Cos(G, H, HgH) with

vertex set: cosets of H in G adjacency: $Hx \sim Hy$ if and only if $xy^{-1} \in HgH$

Coset graphs

- G a group with subgroup H,
- $g \in G \setminus H$ such that $g^2 \in H$.

We can construct the graph Cos(G, H, HgH) with

vertex set: cosets of H in G adjacency: $Hx \sim Hy$ if and only if $xy^{-1} \in HgH$

G acts by right multiplication on vertices and is transitive on $A\Gamma$.

Coset graphs

- G a group with subgroup H,
- $g \in G \setminus H$ such that $g^2 \in H$.

We can construct the graph Cos(G, H, HgH) with

vertex set: cosets of H in G adjacency: $Hx \sim Hy$ if and only if $xy^{-1} \in HgH$

G acts by right multiplication on vertices and is transitive on $A\Gamma$. Any arc-transitive graph Γ can be constructed in this way:

•
$$G = \operatorname{Aut}(\Gamma), H = G_v$$

• g an element interchanging v and w, where $\{v, w\} \in E\Gamma$.

An example

Let $T = \mathsf{PSL}(2, 2^f)$, $f \ge 3$ odd and $G = T \wr S_2$.

An example

Let $T = \text{PSL}(2, 2^f)$, $f \ge 3$ odd and $G = T \wr S_2$. T has a subgroup $L = \langle a, b \rangle \cong S_3$ with |a| = 3, |b| = 2. Let $H = \langle (a, a), (b, b) \rangle \leq G$.

An example

Let $T = PSL(2, 2^f)$, $f \ge 3$ odd and $G = T \wr S_2$. T has a subgroup $L = \langle a, b \rangle \cong S_3$ with |a| = 3, |b| = 2. Let $H = \langle (a, a), (b, b) \rangle \leqslant G$. Now choose $u \ne b$ in the Sylow 2-subgroup of T containing b. Let $g = (u, ub)\sigma \in G$. Define $\Gamma = Cos(G, L, LgL)$.

 Γ is a (G, 2)-arc transitive cubic graph (also (G, 2)-distance transitive).

 Γ is a (G, 2)-arc transitive cubic graph (also (G, 2)-distance transitive).

The only nontrivial proper normal subgroup of G is T^2 , which has two orbits on vertices.

Hence Γ is bipartite and G is biquasiprimitive.

 Γ is a (G, 2)-arc transitive cubic graph (also (G, 2)-distance transitive).

The only nontrivial proper normal subgroup of G is T^2 , which has two orbits on vertices.

Hence Γ is bipartite and G is biquasiprimitive.

 G^+ is not quasiprimitive on each orbit as \mathcal{T}^2 has intransitive normal subgroups $\mathcal{T}\times 1$ and $1\times \mathcal{T}.$

 Γ is a (G, 2)-arc transitive cubic graph (also (G, 2)-distance transitive).

The only nontrivial proper normal subgroup of G is T^2 , which has two orbits on vertices.

Hence Γ is bipartite and G is biquasiprimitive.

 G^+ is not quasiprimitive on each orbit as \mathcal{T}^2 has intransitive normal subgroups $\mathcal{T}\times 1$ and $1\times \mathcal{T}.$

 Γ is a cover of a locally (T, 2)-arc transitive graph.