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s-arc transitive graphs

An s-arc in a graph is an (s + 1)-tuple (v0, v1, . . . , vs) of vertices
such that vi ∼ vi+1 and vi−1 6= vi+1.

A graph Γ is s-arc transitive if Aut(Γ) is transitive on the set of
s-arcs.

K4 is 2-arc transitive but not 3-arc transitive.
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s-distance transitive graphs

Γ is called s-distance transitive if for each i ≤ s, Aut(Γ) is
transitive on the set {(v ,w) | d(v ,w) = i}.



s-arc transitive vs s-distance transitive

If s ≤ bg−1
2 c, where g is the girth, then Γ is s-distance transitive if

and only if Γ is s-arc transitive.

1-distance transitive = 1-arc transitive

The Hall-Janko graph is 2-distance transitive but not 2-arc
transitive.

The point graph of the G2(q) hexagon is 3-distance transitive but
not 2-arc transitive.
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Distance transitive graphs

If Γ is s-distance transitive for all s ≤ diam(Γ) then Γ is distance
transitive.

Distance transitive graphs have the following regularity property.
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Such graphs have been well studied and a classification is close to
completion.

For s-distance transitive graphs the parameters are only well
defined out to distance s.
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Local symmetry

Γ is called locally s-arc transitive if for each vertex v , Aut(Γ)v acts
transitively on the set of s-arcs starting at v .

Γ is called locally s-distance transitive if s ≤ diam(Γ), and for each
vertex v and i ≤ s, Aut(Γ)v acts transitively on Γi (v).

If s ≤ bg−1
2 c, where g is the girth, then Γ is locally s-distance

transitive if and only if Γ is locally s-arc transitive.
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Local symmetry II

A locally s-distance transitive connected graph is edge-transitive
and so either

• Γ is vertex-transitive and s-distance-transitive

• Aut(Γ) has two orbits on vertices and Γ is bipartite.

Γ is locally distance transitive if it is locally diam(Γ)-distance
transitive.

For G 6 Aut(Γ) we can also refer to locally (G , s)-distance
transitive.
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Locally distance transitive graphs
Vertex-intransitive case

The distance parameters for a vertex only depend on the part of
the bipartition it belongs to.

eg line-plane incidence graph of a projective space.

Shawe-Taylor (1987)

• The distance 2 graph has two connected components, each of
which is distance transitive.

• In the nonregular case
• at least one is primitive.
• if both primitive then the group is almost simple.

Uses work of Smith, Praeger-Saxl-Yokoyama on distance transitive
graphs.
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Quotients

Let B be a partition of VΓ

Quotient graph ΓB:
vertex set: parts of B
adjacency: B1 ∼ B2 if there exists v1 ∈ B1 and v2 ∈ B2

such that v1 ∼ v2.
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Normal Quotients

Look at normal quotients, that is, where B is the set of orbits of
some normal subgroup N of G 6 Aut(Γ).

Denote by ΓN .

This has proved a fruitful avenue of investigation for s-arc
transitive (Praeger) and locally s-arc transitive graphs
(Giudici-Li-Praeger).

For each family, can reduce to a graph in the family that has no
meaningful quotients (basic) and then study the basic graphs in
the family.

This usually involves knowledge of quasiprimitive groups.
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Quotients of locally s-distance transitive graphs?

Paths in Γ may decrease in length in ΓN and indeed ΓN may have
smaller diameter than Γ.



The family LDT (s)

Let LDT (s) be the set of graphs Γ that are locally s ′-distance
transitive where s ′ = min{s, diam(Γ)}.

Theorem (Devillers-Giudici-Li-Praeger)

Let s ≥ 2 and let Γ ∈ LDT (s) relative to G and let N C G with at
least three orbits on vertices. Then one of the following holds:

• Γ = Km[b],

• ΓN is a star,

• ΓN ∈ LDT (s) relative to G/N and Γ is a cover of ΓN .
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Basic and degenerate graphs

By a degenerate graph we mean K1, K2 or a star K1,m.

Γ is a basic locally (G , s)-distance transitive graph if each only
normal quotient is one of these degenerate graphs.



Basic graphs

There are four types of basic locally (G , s)-distance transitive
graphs to study:

• G acts quasiprimitively on VΓ;

• Γ is bipartite, G is biquasiprimitive on VΓ and G+ acts
faithfully on each orbit;

• Γ is bipartite, G = G+ acts faithfully and quasiprimitively on
each orbit;

• Γ is bipartite, G = G+ acts faithfully on both orbits and
quasiprimitively on only one.

These are currently under investigation.
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The biquasiprimitive case

A transitive permutation group G is called biquasiprimitive if every
nontrivial normal subgroup has at most two orbits and there is a
normal subgroup with two orbits.

The group G has an index 2 subgroup G+ that is the stabiliser of
the two bipartite halves.

G+ may or may not act quasiprimitively on each orbit.

If G+ is not quasiprimitive on each orbit then can take normal
quotients with respect to G+

ie, Γ is G -basic but not G+-basic.
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Coset graphs

• G a group with subgroup H,

• g ∈ G\H such that g2 ∈ H.

We can construct the graph Cos(G ,H,HgH) with

vertex set: cosets of H in G
adjacency: Hx ∼ Hy if and only if xy−1 ∈ HgH

G acts by right multiplication on vertices and is transitive on AΓ.

Any arc-transitive graph Γ can be constructed in this way:

• G = Aut(Γ), H = Gv

• g an element interchanging v and w , where {v ,w} ∈ EΓ.
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An example

Let T = PSL(2, 2f ), f ≥ 3 odd and G = T o S2.

T has a subgroup L = 〈a, b〉 ∼= S3 with |a| = 3, |b| = 2.

Let H = 〈(a, a), (b, b)〉 6 G .

Now choose u 6= b in the Sylow 2-subgroup of T containing b.

Let g = (u, ub)σ ∈ G .

Define Γ = Cos(G , L, LgL).
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An example II

Γ is a (G , 2)-arc transitive cubic graph (also (G , 2)-distance
transitive).

The only nontrivial proper normal subgroup of G is T 2, which has
two orbits on vertices.

Hence Γ is bipartite and G is biquasiprimitive.

G+ is not quasiprimitive on each orbit as T 2 has intransitive
normal subgroups T × 1 and 1 × T .

Γ is a cover of a locally (T , 2)-arc transitive graph.
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