Semiregular Actions in Combinatorial Structures

Luis Martínez
 Symmetries of Graphs and Networks II, Rogla 2010

August 5, 2010
(1) Semiregularity
(2) 2-designs
(3) graphs
(4) digraphs
(5) uniform multiplicative designs

What is symmetry?

Contents

(1) Semiregularity
(2) 2-designs
(3) graphs

4 digraphs
(5) uniform multiplicative designs

Regular Actions

Regular Actions

Definition

An action of a group on a set is said to be regular if it is transitive and the stabilizers of all the elements of the set are trivial.

Regular Actions

Definition

An action of a group on a set is said to be regular if it is transitive and the stabilizers of all the elements of the set are trivial.

Definition

More generally, an action is semiregular if the stabilizers of all the elements of the set are trivial.

Contents

(1) Semiregularity

(2) 2-designs
(3) graphs

4 digraphs
(5) uniform multiplicative designs

Luis Martínez Symmetries of Graphs and Networks II, Rogla 20 Semiregular Actions in Combinatorial Structures

2-designs

2-designs

Definition

$A(v, k, \lambda)$ design on a set of points X of cardinal v is a family B_{1}, \ldots, B_{b} of k-subsets of X, called blocks, such that any two distinct points of X are in exactly λ blocks.

2-designs

Definition

$A(v, k, \lambda)$ design on a set of points X of cardinal v is a family B_{1}, \ldots, B_{b} of k-subsets of X, called blocks, such that any two distinct points of X are in exactly λ blocks.

Definition

If G is a group of order $v, a(v, k, \lambda)$ difference family on G is a family B_{1}, \ldots, B_{s} of k-subsets of G (called base blocks) such that any non-identity element of G can be expressed in exactly λ ways as a difference of elements of some base block.

2-designs

Definition

If B_{1}, \ldots, B_{s} is a (v, k, λ)-difference family on G, its development is $\left\{B_{i}+g \mid i=1, \ldots, s, g \in G\right\}$

2-designs

Definition

If B_{1}, \ldots, B_{s} is a (v, k, λ)-difference family on G, its development is $\left\{B_{i}+g \mid i=1, \ldots, s, g \in G\right\}$

Proposition

The development of a (v, k, λ) difference family on G is a (v, k, λ)-design on G.

2-designs

Definition

If B_{1}, \ldots, B_{s} is a (v, k, λ)-difference family on G, its development is $\left\{B_{i}+g \mid i=1, \ldots, s, g \in G\right\}$

Proposition

The development of a (v, k, λ) difference family on G is a (v, k, λ)-design on G. This group G acts regularly on the points of the design and, if there is not repetitions in the blocks, it acts also semiregularly on the blocks.

2-designs

Proposition

If (X, B) is a 2-design admitting G as a group of automorphisms acting regularly on the points and semiregularly on the blocks, then the design is isomorphic to the development of certain difference family on G.

2-designs

Proposition

(Martínez, Djokovic, Vera-López) If $q=3^{n}+2$ is a prime power with n odd and $q^{\prime}=3^{n+1}$ then, when we consider the cyclotomy of order 4 in $\mathbb{F}_{q} \times F_{q^{\prime}}$, we have that

$$
\left\{B_{1}=\mathbb{F}_{q}^{\star} \cup C_{0}, B_{2}=\mathbb{F}_{q}^{\star} \cup C_{3}\right\}
$$

is a $\left(q q^{\prime}, \frac{q q^{\prime}+3}{4}, \frac{q q^{\prime}+3}{8}\right)$-difference family in the additive group of $\mathbb{F}_{q} \times F_{q^{\prime}}$.

2-designs

Definition

If $\left\{B_{1}, \ldots, B_{s}\right\}$ is a (v, k, λ)-difference family on an abelian group
G, an integer t prime to v is said to be a multiplier if for every i in $\{1, \ldots, s\}$ there exists j in $\{1, \ldots, s\}$ and there exists g_{i} in G such that $t B_{i}=B_{j}+g_{i}$.

2-designs

Definition

(Martínez, Djokovic, Vera-López) A multiplier of a difference family is cyclic if it induces a cyclic permutation of the base blocks.

2-designs

Definition

(Martínez, Djokovic, Vera-López) A multiplier of a difference family is cyclic if it induces a cyclic permutation of the base blocks.

Proposition

(Martínez, Djokovic, Vera-López) If $\left\{B_{1}, \ldots, B_{s}\right\}$ is a
(v, k, λ)-difference family on a group G, U is a normal subgroup of G of odd index u and t is a cyclic multiplier that fixes the cosets of U in G, then there exists integers x, y, z not all zero such that

$$
s x^{2}=(s k-\lambda) y^{2}+(-1)^{\frac{n-1}{2}} \lambda u z^{2} .
$$

Contents

(1) Semiregularity

(2) 2-designs
(3) graphs

4 digraphs
(5) uniform multiplicative designs

Luis Martínez Symmetries of Graphs and Networks II, Rogla 20 Semiregular Actions in Combinatorial Structures

graphs

Definition

An m-Cayley graph respect to a group G is a graph (V, E) admitting a group of automorphisms isomorphic to G that acts semiregularly on the set of points of the graph.

graphs

if p_{1}, \ldots, p_{m} are representatives of the respective orbits, then the graph can be determined by the set $\left\{S_{i, j}\right\}$ of subsets of G defined by

$$
S_{i, j}=\left\{g \in G \mid p_{i}^{g} p_{j} \in E\right\}
$$

graphs

if p_{1}, \ldots, p_{m} are representatives of the respective orbits, then the graph can be determined by the set $\left\{S_{i, j}\right\}$ of subsets of G defined by

$$
S_{i, j}=\left\{g \in G \mid p_{i}^{g} p_{j} \in E\right\}
$$

This set is called the symbol of the graph.

graphs

if p_{1}, \ldots, p_{m} are representatives of the respective orbits, then the graph can be determined by the set $\left\{S_{i, j}\right\}$ of subsets of G defined by

$$
S_{i, j}=\left\{g \in G \mid p_{i}^{g} p_{j} \in E\right\}
$$

This set is called the symbol of the graph.
When $m=2$ we will denote the symbol by $[Q, R, S]$, where $Q=S_{1,0}, R=S_{0,0}$ and $S=S_{1,1}$.

graphs

Definition

A graph (V, E) is a (v, k, λ, μ)-strongly regular graph if $|V|=v$, is k-regular and if, for any distinct x and y in
$V,|\{z \in V \mid x z, z y \in E\}|$ is λ if $x y \in E$ and μ in another case. In this situation, we will set $\beta=\lambda-\mu, \gamma=k-\mu$ and $\Delta=\sqrt{b^{2}+4 \gamma}$.

graphs

Definition

$[Q, R, S]$ is a partial difference triple if it satisfies

$$
\begin{align*}
R^{2}-Q^{2} & =\gamma e+\beta R+\mu G \tag{1}\\
Q(R+S) & =\beta Q+\mu G \tag{2}\\
S^{2}-Q^{2} & =\gamma e+\beta S+\mu G \tag{3}
\end{align*}
$$

in the group ring $\mathbb{Z}[G]$ for certain integers γ, β and μ.

graphs

Definition

$[Q, R, S]$ is a partial difference triple if it satisfies

$$
\begin{align*}
R^{2}-Q^{2} & =\gamma e+\beta R+\mu G \tag{1}\\
Q(R+S) & =\beta Q+\mu G \tag{2}\\
S^{2}-Q^{2} & =\gamma e+\beta S+\mu G \tag{3}
\end{align*}
$$

in the group ring $\mathbb{Z}[G]$ for certain integers γ, β and μ.

Proposition

$[Q, R, S]$ is a partial difference triple iff it is the symbol of a (v, k, λ, μ)-strongly regular graph.

graphs

Proposition

(Leung and Ma) Up to complementation, the parameters for any nontrivial partial difference triples in cyclic groups are the following:
(1) $(n ; r, s ; \lambda, \mu)=\left(2 m^{2}+2 m+1 ; m^{2}, m^{2}+m ; m^{2}-1, m^{2}\right), m \geq 1$.
(2) $(n ; r, s ; \lambda, \mu)=\left(2 m^{2} ; m^{2}, m^{2}-m ; m^{2}-m, m^{2}-m\right), m \geq 2$.
(3) $(n ; r, s ; \lambda, \mu)=\left(2 m^{2} ; m^{2}, m^{2}+m ; m^{2}+m, m^{2}+m\right), m \geq 3$.
(4) $(n ; r, s ; \lambda, \mu)=\left(2 m^{2} ; m^{2} \pm m, m^{2} ; m^{2} \pm m, m^{2} \pm m\right), m \geq 2$.
, where $n=|G|, r=|R|$ and $s=|S|$.

graphs

If $m=3$ we will denote the symbol by $[A, B, C ; R, S, T$], where $A=S_{0,0}, B=S_{1,1}, C=S_{2,2}, r=S_{1,0}, S=S_{2,1}, T=S_{0,2}$, and $T C a y\left(\mathbb{Z}_{n} ; A, B, C ; R, S, T\right)$ will denote the tri-Cayley graph defined by that symbol.

graphs

Proposition

(K. Kutnar, D. Marusic,S. Miklavic, P. Sparl) $[A, B, C ; R, S, T]$ is the symbol of a $(3 n, k, \lambda, \mu)$-strongly regular graph iff the following identities hold in the group ring $\mathbb{Z}[G]$:
(1) $A^{2}+R^{(-1)} R+T T^{(-1)}=\beta A+\mu G+(k-\mu) e$
(2) $B^{2}+S^{(-1)} S+R R^{(-1)}=\beta B+\mu G+(k-\mu) e$
(3) $C^{2}+T^{(-1)} T+S S^{(-1)}=\beta C+\mu G+(k-\mu) e$
(9) $R A+B R+S^{(-1)} T^{(-1)}=\beta R+\mu G$
(3) $S B+C S+T^{(-1)} R^{(-1)}=\beta S+\mu G$
(0) $T C+A T+R^{(-1)} S^{(-1)}=\beta T+\mu G$

graphs

Proposition

(K. Kutnar, D. Marusic,S. Miklavic, P. Sparl) Let $X=T \operatorname{Cay}\left(\mathbb{Z}_{n} ; A, B, C ; R, S, T\right)$ be a nontrivial (3n, k, λ, μ)-strongly regular tricirculant, where $|A|+|B|+|C| \leq|\bar{A}|+|\bar{B}|+|\bar{C}|$. Assume $A \cup B \cup C \neq \emptyset$. If n is a prime or n is coprime to 6Δ then there exists an integer s such that the following two statements hold:

graphs

Proposition

(1) If the cardinalities of A, B and C are not all equal, then $(3 n, k, \lambda, \mu)=$
$\left(3\left(12 s^{2}+9 s+2\right),(4 s+1)(3 s+1), s(4 s+3), s(4 s+1)\right)$. If in addition $|A|=|B| \neq|C|$ (which is equivalent to $|R|=|S| \neq|T|)$, then
$|A|=2 s(1+2 s),|B|=(4 s+1)(3 s+1),|R|=s(4 s+1)$ and
$|T|=(1+2 s)^{2}$.
(2) If $|A|=|B|=|C|$ then $(3 n, k, \lambda, \mu)=\left(3\left(3 s^{2}-3 s+1\right), s(3 s-1), s^{2}+s-1, s^{2}\right)$. In this case $|A|=s(s-1)$ and $|R|=|S|=|T|=s^{2}$.

Contents

(1) Semiregularity
(2) 2-designs
(3) graphs
(4) digraphs
(5) uniform multiplicative designs

Luis Martínez Symmetries of Graphs and Networks II, Rogla 20 Semiregular Actions in Combinatorial Structures

digraphs

Definition

An m-Cayley digraph respect to a group G is a digraph (V, E) admitting a group of automorphisms isomorphic to G that acts semiregularly on the set of points of the digraph.

digraphs

Conjecture (The semiregularity problem)

Every vertex transitive digraph has a semiregular automorphism.

digraphs

if p_{1}, \ldots, p_{m} are representatives of the respective orbits, then the digraph can be determined by the set $\left\{S_{i, j}\right\}$ of subsets of G defined by

$$
S_{i, j}=\left\{g \in G \mid p_{i}^{g} p_{j} \in E\right\}
$$

digraphs

if p_{1}, \ldots, p_{m} are representatives of the respective orbits, then the digraph can be determined by the set $\left\{S_{i, j}\right\}$ of subsets of G defined by

$$
S_{i, j}=\left\{g \in G \mid p_{i}^{g} p_{j} \in E\right\}
$$

This set is called the symbol of the digraph.

digraphs

if p_{1}, \ldots, p_{m} are representatives of the respective orbits, then the digraph can be determined by the set $\left\{S_{i, j}\right\}$ of subsets of G defined by

$$
S_{i, j}=\left\{g \in G \mid p_{i}^{g} p_{j} \in E\right\}
$$

This set is called the symbol of the digraph.
When $m=2$ we will denote the symbol by $[Q, R, S, T$], where $Q=S_{1,0}, R=S_{0,0}, S=S_{1,1}$ and $T=S_{0,1}$.

graphs

Definition

(Duval) A digraph (V, E) is a (v, k, μ, λ, t)-strongly regular digraph if $|V|=v$, is k-regular and if, for any x in $V,|\{z \in V \mid x z, z x \in E\}|$ is t and for any distinct x and y in $V,|\{z \in V \mid x z, z y \in E\}|$ is λ if $x y \in E$ and μ in another case. In this situation, we will set $\beta=\lambda-\mu$ and $\gamma=t-\mu$.

digraphs

Definition

(L. Martínez, A. araluze) Let H be a group of order n and m an integer with $m \geq 1$. A family $\mathfrak{S}=\left\{S_{i, j}\right\}$, with $0 \leq i, j<m$, of subsets of H is a $(m, n, k, \mu, \lambda, t)$-partial sum family (for short, (m, n, k, μ, λ, t)-PSF, or simply PSF if we do not specify the parameters) if it satisfies:
(1) for every i it holds that $e \notin S_{i, i}$, where e is the identity of H.
(2) for every i it holds that $\sum_{j=0}^{m-1}\left|S_{i, j}\right|=\sum_{j=0}^{m-1}\left|S_{j, i}\right|=k$
(3) for every i and j it holds that
$\sum_{k=0}^{m-1} S_{i, k} S_{k, j}=\delta_{i, j} \gamma e+\beta S_{i, j}+\mu H$, where $\delta_{i, j}$ is the
Kronecker delta and e is the identity of the group.
When $m=2$ they are called Partial Sum Quadruples (PSQs).

digraphs

Proposition

$\mathfrak{S}=\left\{S_{i, j}\right\}$ is a $(m, n, k, \mu, \lambda, t)$-partial sum family iff it is the symbol of a (v, k, μ, λ, t)-strongly regular digraph.

digraphs

Proposition

(A. Araluze, K. Kutnar, L. Martínez and D. Marusic) Let e be a positive integer with e -1 a prime power and s a positive integer. Taking the cyclotomy of order e in $\mathbb{F}_{(e-1)^{2}}$ and the cyclotomic orbits C_{0}, \ldots, C_{e-1}, then

$$
S_{i, j}= \begin{cases}C_{i} & \text { if } i=j \\ \{0\} \cup C_{j} & \text { in other case },\end{cases}
$$

is a PSF in the additive group of $\mathbb{F}_{(e-1)^{2}}$. It generates a $D S R G$ with parameters

$$
v=s(e-1)^{2}, k=s(e-2)+s-1, t=e+s-3, \lambda=e+s-4, \mu=s-1 .
$$

digraphs

Proposition

(A. Araluze, K. Kutnar, L. Martínez and D. Marusic) Let e be a positive integer with $e-1$ a prime power and s a positive integer. Taking the cyclotomy of order e in $\mathbb{F}_{(e-1)^{2}}$ and the cyclotomic orbits C_{0}, \ldots, C_{e-1}, then

$$
S_{i, j}= \begin{cases}C_{i} \cup C_{s} & \text { if } i=j \\ \{0\} \cup C_{j} & \text { in other case }\end{cases}
$$

is a PSF in the additive group of $\mathbb{F}_{(e-1)^{2}}$. It generates a $D S R G$ with parameters
$v=s(e-1)^{2}, k=(s+1)(e-2)+s-1, t=2(e-2)+s-1$,
$\lambda=e+s-4, \mu=s+1$.

> Outline
> Semiregularity
> 2 -designs graphs digraphs
> uniform multiplicative designs

Contents

(1) Semiregularity
(2) 2-designs
(3) graphs

4 digraphs
(5) uniform multiplicative designs

uniform multiplicative designs

Definition

(Ryser) A multiplicative design is an incidence structure $\mathfrak{S}=(V, \mathfrak{B}, I)$, with $|V|=v,|\mathfrak{B}|=b$, such that any incidence matrix (with rows and columns indexed by points and blocks, respectively) A is of order $v \geq 3$ and satisfies $A A^{t}=D+\alpha \alpha^{t}$ where D is a diagonal matrix with positive entries in the diagonal and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{v}\right)$ is a vector with real positive entries. If, besides, D is a scalar matrix $d l$, the design is called a uniform multiplicative design

uniform multiplicative designs

Definition

A uniform multiplicative design is said to be normal if it has the same parameters as its dual, that is, if any incidence matrix satisfies

$$
\begin{equation*}
A A^{t}=A^{t} A=d I+\alpha \alpha^{t} \tag{4}
\end{equation*}
$$

It is two-class normal if, besides, the entries of the vector α take only two values α_{1} and α_{2} and each of one appears e times.

uniform multiplicative designs

Proposition

(Bridges and Mena) If $\mathfrak{S}=(V, \mathfrak{B}, I)$ is a 2-class normal uniform multiplicative design, then d is a square, and one of its two square roots, say σ, is an eigenvalue of A.

uniform multiplicative designs

Proposition

(Bridges and Mena) If $\mathfrak{S}=(V, \mathfrak{B}, I)$ is a 2-class normal uniform multiplicative design, then d is a square, and one of its two square roots, say σ, is an eigenvalue of A.

Definition

It is said that α_{1}, α_{2} and σ are compatible if $\alpha_{1} \alpha_{2}=\sigma^{2}-\sigma$ holds.

uniform multiplicative designs

Proposition

(Bridges and Mena) If α_{1}, α_{2} and σ are compatible and if, for the corresponding value of e we have a $\left(v^{\prime},\left\{k_{1}^{\prime}, k_{2}^{\prime}\right\}, \lambda^{\prime}\right)$-difference family $\left\{B_{1}, B_{2}\right\}$ on a group G of order $v^{\prime}=e$ with
$k_{2}^{\prime}=\alpha_{1} \alpha_{2}, \lambda^{\prime}=\alpha_{1}^{2}, k_{1}^{\prime}+k_{2}^{\prime}-\lambda^{\prime}=\sigma^{2}$ and if A and B are the incidence matrices of the development of B_{1} and B_{2}, respectively, then

$$
\left(\begin{array}{cc}
A & B \\
B^{t} & J-A^{t}
\end{array}\right)
$$

is an incidence matrix of a normal uniform multiplicative design.

uniform multiplicative designs

Definition

A bi-Cayley uniform multiplicative design is a uniform multiplicative design D whose incidence matrices are adjacency matrices of a bi-Cayley digraph. In this case we will say that (Q, R, S, T) is the symbol of the design D.

uniform multiplicative designs

Definition

Let α_{1}, α_{2} and σ be compatible, and let G be a group of order $\mu+\sigma$. A quadruple (Q, R, S, T) whose elements are subsets of G is a $\left(\alpha_{1}, \alpha_{2}, \sigma\right)$-multiplicative difference quadruple if the following identities are satisfied in the group ring $\mathbb{Z}[G]$:
(1) $R R^{(-1)}+Q Q^{(-1)}=d \cdot e+\alpha_{1}^{2} G$
(2) $S S^{(-1)}+T T^{(-1)}=d \cdot e+\alpha_{2}^{2} G$
(3) $R T^{(-1)}+Q S^{(-1)}=\alpha_{1} \alpha_{2} G$

uniform multiplicative designs

Proposition

A quadruple (Q, R, S, T) is a $\left(\alpha_{1}, \alpha_{2}, \sigma\right)$-multiplicative difference quadruple iff the adjacence matrix of the bi-Cayley digraph defined by the symbol (Q, R, S, T) is an incidence matrix of a uniform multiplicative design corresponding to the compatible α_{1}, α_{2} and σ.

uniform multiplicative designs

Proposition

(Conjecture) If G is cyclic and (Q, R, S, T) is a $\left(\alpha_{1}, \alpha_{2}, \sigma\right)$-multiplicative difference quadruple in G, then there exists a u in G such that

$$
-Q=T+u \text { and } R=-S^{c}-u
$$

uniform multiplicative designs

THANK YOU VERY MUCH!

