Leonard triples associated with hypercubes and their antipodal quotients

George Martin Fell Brown

University of Wisconsin-Madison

August 4, 2010

Leonard pairs and Leonard triples

Definition of a Leonard pair Definition of a Leonard triple

Distance-regular graphs

Definition of distance-regular graphs The Subconstituent algebra TThe Q-polynomial property Leonard pairs and Q-polynomial drg's

Hypercubes and $\mathfrak{sl}_2(\mathbb{C})$

Hypercubes The Lie algebra $\mathfrak{sl}_2(\mathbb{C})$

Leonard triples and $\mathfrak{sl}_2(\mathbb{C})$ -modules

The algebra ${\mathcal A}$ and its modules

The algebra \mathcal{A}

Bipartite Leonard triples and A-modules

Almost bipartite Leonard triples and \mathcal{A} -modules

From $\mathfrak{sl}_2\text{-modules}$ to $\mathcal A\text{-modules}$

Distance-regular graphs associated with ${\cal A}$

The alternate Q-polynomial structure for Q_d with d even The antipodal quotient of Q_d with d odd $rac{d}{d}$ e^{-2} e^{-2} e^{-2}

Definition of a Leonard pair

Let \mathbb{K} denote a field and let V be a vector space over \mathbb{K} with finite positive dimension. By a *Leonard pair on* V of diameter d we mean an ordered pair of linear transformations $A: V \to V$ and $A^*: V \to V$ which satisfy the conditions (i), (ii) below.

- (i) There exists a basis $\{v_i\}_{i=0}^d$ for V with respect to which the matrix representing A is diagonal and the matrix representing A^* is irreducible tridiagonal,
- (ii) There exists a basis $\{v_i^*\}_{i=0}^d$ for V with respect to which the matrix representing A^* is diagonal and the matrix representing A is irreducible tridiagonal.

Definition of a Leonard triple

Let \mathbb{K} denote a field and let V be a vector space over \mathbb{K} with finite positive dimension. By a *Leonard triple on* V *of diameter* d we mean an ordered triple of linear transformations $A : V \to V$, $A^* : V \to V$ and $A^{\varepsilon} : V \to V$ which satisfy the conditions (i)–(iii) below.

- (i) There exists a basis $\{v_i\}_{i=0}^d$ for V with respect to which the matrix representing A is diagonal and the matrix representing A^*, A^{ε} are irreducible tridiagonal,
- (ii) There exists a basis $\{v_i^*\}_{i=0}^d$ for V with respect to which the matrix representing A^* is diagonal and the matrix representing A^{ε} , A is irreducible tridiagonal,
- (ii) There exists a basis $\{v_i^{\varepsilon}\}_{i=0}^d$ for V with respect to which the matrix representing A^{ε} is diagonal and the matrix representing A, A^* is irreducible tridiagonal.

Definition of distance-regular graphs

Let Γ be a graph with vertex set **X** and edge set **E**. Given two vertices $x, y \in \mathbf{X}$ we define the *distance* between x and y to be the length of the shortest path from x to y, denoted $\partial(x, y)$. The diameter of Γ , denoted d, is the longest distance between any two points in **X**.

For $0 \le i \le d$, we say the *i*th distance matrix, A_i is the matrix indexed by **X** such that the *xy* entry is 1 if $\partial(x, y) = i$ and 0 otherwise. A_1 is called the *adjacency matrix*, also denoted A. The graph Γ is said to be *distance-regular* if A_iA_j is a linear combination of the distance matrices for $0 \le i, j \le d$. Note this means A_i is a degree-*i* polynomial in A for $0 \le i \le d$.

The Subsonstituent algebra T

A is diagonalizable, with d + 1 eigenvalues. Let $\theta_0, \theta_1, \ldots, \theta_d$ be an ordering of the eigenvalues and let E_0, E_1, \ldots, E_d be the corresponding primitive idempotents.

Fix a vertex x and, for $0 \le i \le d$ define E_i^* be the diagonal matrix with yy entry 1 when $\partial(x, y) = i$ and 0 otherwise. The Subconstituent algebra of Γ with respect to x denoted T(x), is the algebra generated by $A, E_0^*, E_1^*, \dots, E_d^*$. If V is the vector space indexed by **X** then $AE_i^*V = E_{i-1}^*V + E_i^*V + E_{i+1}^*V$ for $0 \le i \le d$ (with $E_{-1}^* = E_{d+1}^* = 0$).

The Q-polynomial property

Given our ordering $\theta_0, \theta_1, \ldots, \theta_d$ of eigenvalues and our vertex $x \in \mathbf{X}$, we define the *dual distance matrices* $A_0^*, A_1^*, \ldots, A_d^*$ to be diagonal matrices with *yy* entry equal to $m_i(E_i)_{xy}$ where m_i is the multiplicity of θ_i for $0 \le i \le d$. Note that, for $0 \le i \le d$, A_i^* has $E_0^*, E_1^*, \ldots, E_d^*$ as its primitive idempotents. The ordering $\theta_0, \theta_1, \ldots, \theta_d$ of eigenvalues for A is said to be Q-polynomial if $A_1^*E_iV = E_{i-1}V + E_iV + E_{i+1}V$ for $0 \le i \le d$ (with $E_{-1} = E_{d+1} = 0$). In this case A_1^* is abbreviated A^* and called the *dual adjacency matrix*

 Γ is said to be *Q*-polynomial if such an ordering of eigenvalues exists.

Leonard pairs and Q-polynomial drg's

In a *Q*-polynomial distance-regular graph the actions of *A*, *A*^{*} on an irreducible T(x)-module will always form a Leonard pair or a Tridiagonal pair (See Terwilliger's talk). There is always one T(x)-module with the same diameter as the graph. This is called the *standard module*. In this module, the actions of *A*, *A*^{*} always form a Leonard Pair.

We will now look at specific Q-polynomial distance-regular graphs where these Leonard pairs extend to Leonard triples.

Hypercubes

Given nonnegative integer d, the hypercube of diameter d, abbreviated Q_d has vertex set consisting of binary strings of length d, where two vertices are adjacent whenever the corresponding strings differ in exactly one entry. This is a distance-regular graph with Q-polynomial ordering $\{d - 2i\}_{i=0}^{d}$ of eigenvalues. Miklavič (2008) showed that you can produce an *imaginary adjacency matrix* A^{ε} for the hypercube, defined by $A^{\varepsilon} = [A, A^*]\frac{1}{2!}$.

 $\mathfrak{sl}_2(\mathbb{C})$

The Lie algebra $\mathfrak{sl}_2(\mathbb{C})$ is the complex Lie algebra with generators X, Y, Z and relations

$$[X, Y] = 2iZ, (1) [Y, Z] = 2iX, (2) [Z, X] = 2iY (3)$$

The actions of X, Y, Z on a finite-dimensional irreducible $\mathfrak{sl}_2(\mathbb{C})$ -module will form a leonard triple. In T(x) for Q_d , the matrices A, A^*, A^{ε} satisfy these relations, so they act as a Leonard triple on every irreducible T(x)-module.

Leonard triples and $\mathfrak{sl}_2(\mathbb{C})$ -modules

Let *d* be a nonnegative integer. Then there is one (d+1)-dimensional irreducible $\mathfrak{sl}_2(\mathbb{C})$ -module up to isomorphism. There exist bases $\{v_i\}_{i=0}^d, \{v_i^*\}_{i=0}^d, \{v_i^\varepsilon\}_{i=0}^d$ such that the matrix representing *X* with respect to $\{v_i\}_{i=0}^d$, *Y* with respect to $\{v_i^*\}_{i=0}^d$ and *Z* with respect to $\{v_i^\varepsilon\}_{i=0}^d$ is

$$\begin{pmatrix} d & & & & & \\ & d-2 & & & & \\ & & d-4 & & & \\ & & \ddots & & & \\ & & & 4-d & & \\ & & & 2-d & \\ & & & & -d \end{pmatrix},$$

Leonard triples and $\mathfrak{sl}_2(\mathbb{C})$ -modules, continued

the matrix representing X with respect to $\{v_i^*\}_{i=0}^d$, Y with respect to $\{v_i^\varepsilon\}_{i=0}^d$ and Z with respect to $\{v_i\}_{i=0}^d$ is

$$\begin{pmatrix} 0 & d & & & & \\ 1 & 0 & d-1 & & & \\ & 2 & 0 & d-2 & & \\ & & \ddots & \ddots & \ddots & \\ & & d-2 & 0 & 2 \\ & & & d-1 & 0 & 1 \\ & & & & d & 0 \end{pmatrix},$$

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ■ のへの

Leonard triples and $\mathfrak{sl}_2(\mathbb{C})$ -modules, concluded

the matrix representing X with respect to $\{v_i^\varepsilon\}_{i=0}^d$, Y with respect to $\{v_i\}_{i=0}^d$ and Z with respect to $\{v_i^*\}_{i=0}^d$ is

$$\begin{pmatrix} 0 & d\mathbf{i} & & & \\ -\mathbf{i} & 0 & (d-1)\mathbf{i} & & & \\ & -2\mathbf{i} & 0 & (d-2)\mathbf{i} & & & \\ & & \ddots & \ddots & \ddots & & \\ & & & (2-d)\mathbf{i} & 0 & 2\mathbf{i} & \\ & & & & (1-d)\mathbf{i} & 0 & \mathbf{i} \\ & & & & -d\mathbf{i} & 0 \end{pmatrix}.$$

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ■ のへの

We can also obtain Leonard triples from the following algebra. Let A be the unital associative complex algebra with generators x, y, z and relations

$$xy + yx = 2z, \tag{4}$$

$$yz + zy = 2x, \tag{5}$$

$$zx + xz = 2y \tag{6}$$

This comes from a nonstandard quantum deformation of $\mathfrak{sl}_2(\mathbb{C})$ taken when q = -1. The actions of x, y, z on a finite-dimensional irreducible \mathcal{A} -module will form a Leonard triple.

Bipartite Leonard triples and A-modules

Let *d* be a nonnegative even integer. Then there is one bipartite (d+1)-dimensional irreducible \mathcal{A} -module up to isomorphism. There exist bases $\{v_i\}_{i=0}^d, \{v_i^*\}_{i=0}^d, \{v_i^\varepsilon\}_{i=0}^d$ such that the matrix representing *x* with respect to $\{v_i\}_{i=0}^d$, *y* with respect to $\{v_i^\varepsilon\}_{i=0}^d$ and *z* with respect to $\{v_i^\varepsilon\}_{i=0}^d$ is

Bipartite Leonard triples and A-modules, continued

the matrix representing x with respect to $\{v_i^*\}_{i=0}^d$, y with respect to $\{v_i^*\}_{i=0}^d$ and z with respect to $\{v_i\}_{i=0}^d$ is

$$\begin{pmatrix} 0 & d & & & & \\ 1 & 0 & d-1 & & & \\ & 2 & 0 & d-2 & & \\ & & \ddots & \ddots & \ddots & \\ & & d-2 & 0 & 2 \\ & & & d-1 & 0 & 1 \\ & & & & d & 0 \end{pmatrix},$$

Bipartite Leonard triples and A-modules, concluded

the matrix representing x with respect to $\{v_i^{\varepsilon}\}_{i=0}^d$, y with respect to $\{v_i\}_{i=0}^d$ and z with respect to $\{v_i^*\}_{i=0}^d$ is

$$\begin{pmatrix} 0 & d & & & & \\ 1 & 0 & 1-d & & & \\ & -2 & 0 & d-2 & & \\ & & \ddots & \ddots & \ddots & \\ & & 2-d & 0 & 2 & \\ & & & d-1 & 0 & -1 \\ & & & & -d & 0 \end{pmatrix}.$$

Almost bipartite Leonard triples and A-modules

Let *d* be a nonnegative odd integer with d = 2h + 1. Then there are four almost bipartite (h + 1)-dimensional irreducible *A*-module up to isomorphism determined by a choice of ε , $\delta \in \{\pm 1\}$. There exist bases $\{v_i\}_{i=0}^d, \{v_i^*\}_{i=0}^d, \{v_i^\varepsilon\}_{i=0}^d$ such that the matrix representing *x* with respect to $\{v_i\}_{i=0}^d$, *y* with respect to $\{v_i^*\}_{i=0}^d$ and *z* with respect to $\{v_i^\varepsilon\}_{i=0}^d$ is

Almost bipartite Leonard triples and A-modules, continued

the matrix representing x with respect to $\{v_i^*\}_{i=0}^d$, y with respect to $\{v_i^*\}_{i=0}^d$ and z with respect to $\{v_i\}_{i=0}^d$ is

$$\delta(-1)^{h}\begin{pmatrix} 0 & d & & & & \\ 1 & 0 & d-1 & & & \\ & 2 & 0 & d-2 & & & \\ & & \ddots & \ddots & \ddots & & \\ & & & h-2 & 0 & h+3 & \\ & & & & h-1 & 0 & h+2 \\ & & & & & & h-1 & 0 & h+2 \\ & & & &$$

Almost bipartite Leonard triples and A-modules, concluded

the matrix representing x with respect to $\{v_i^{\varepsilon}\}_{i=0}^d$, y with respect to $\{v_i\}_{i=0}^d$ and z with respect to $\{v_i^*\}_{i=0}^d$ is $\delta\varepsilon$ times

From \mathfrak{sl}_2 -modules to \mathcal{A} -modules

Let V be a finite-dimensional \mathfrak{sl}_2 -module. Define the operator

$$p = \exp\left(\frac{\mathbf{i}X - Y}{2}\right) \exp\left(\frac{\mathbf{i}X + Y}{2}\right) \exp\left(\frac{\mathbf{i}X - Y}{2}\right)$$

Then pX = Xp, pY = -Yp, pZ = -Zp and p^2 is central and acts as $(-1)^d$ on an irreducible submodule of diameter d. Let k be a central operator on V that acts as 1 on even-diameter submodules and **i** on odd-diameter submodules. and let s = pk. Then sX = Xs, sY = -Ys, sZ = -Zs and $s^2 = I$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ のへの

From \mathfrak{sl}_2 -modules to \mathcal{A} -modules, continued.

This means that V can be given an A-module structure with x, y, z acting as sX, Y, siZ respectively. The same is true if you replace s with -s.

If d is even and V is a (d + 1)-dimensional irreducible

 $\mathfrak{sl}_2(\mathbb{C})$ -module, then V is irreducible as an \mathcal{A} -module and you will get the bipartite Leonard pairs.

If d is odd and V is a (d + 1)-dimensional irreducible $\mathfrak{sl}_2(\mathbb{C})$ -module, then V is a direct sum of two almost bipartite \mathcal{A} -modules.

The alternate Q-polynomial structure for Q_d with d even

We can use the above result to give A-module structures to the subconstituent algebras of hypercubes and related graphs. When d is even, the hypercube Q_d has two Q-polynomial structures. The other Q-polynomial ordering of eigenvalues is $\{(-1)^i(d-2i)\}$. With respect to this ordering, let $\{a_i\}_{i=0}^d, \{a_i^*\}_{i=0}^d, \{e_i\}_{i=0}^d, \{e_i^*\}_{i=0}^d$ denote the distance matrices, dual distance matrices, primitive idempotents and dual primitive idempotents respectively.

With respect to the ordering $\{d - 2i\}_{i=0}^{d}$, let $\{A_i\}_{i=0}^{d}, \{A_i^*\}_{i=0}^{d}, \{E_i\}_{i=0}^{d}, \{E_i^*\}_{i=0}^{d}$ denote the distance matrices, dual distance matrices, primitive idempotents and dual primitive idempotents respectively.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The alternate Q-polynomial structure, continued

Then we have, for $0 \le i \le d$, $a_i = A_i$, $e_i^* = E_i^*$, but

$$A_i^* = egin{cases} a_i^* & i ext{ even} \ a_{d-i}^* & i ext{ odd}, \end{cases}$$

and

$$E_i = \begin{cases} e_i & i \text{ even} \\ e_{d-i} & i \text{ odd.} \end{cases}$$

So $a^* = A^*_{d-1}$.

The alternate Q-polynomial structure, concluded

Because, A, A^*, A^{ε} act as Y, X, Z, we have that T(x) is an \mathcal{A} -module where y, x, z act as $A, (-1)^{\frac{d}{2}} s A^*, (-1)^{\frac{d}{2}} s \mathbf{i} A^{\varepsilon}$. We also have that for $0 \le i \le d$

$$(-1)^{\frac{d}{2}} s A_i^* = \begin{cases} a_i^* & i \text{ even} \\ a_{d-i}^* & i \text{ odd}, \end{cases}$$

so $(-1)^{\frac{d}{2}}sA = a$. This means the Leonard pairs from the alternate Q-polynomial structure of Q_d also extend to Leonard triples, with alternate imaginary adjacency matrix $a^{\varepsilon} = (-1)^{\frac{d}{2}}s\mathbf{i}A^{\varepsilon}$.

The antipodal quotient of Q_d with d odd

When d is odd (2h+1), the hypercube Q_d only has one Q-polynomial structure. Instead we look at \tilde{Q}_d , the antipodal quotient of Q_d . This is a distance-regular graph with $\{(-1)^i(d-2i)\}_{i=0}^h$ a Q-polynomial ordering of its eigenvalues. Let $\{a_i\}_{i=0}^h, \{a_i^*\}_{i=0}^h, \{e_i\}_{i=0}^h, \{e_i^*\}_{i=0}^h$ denote the distance matrices, dual distance matrices, primitive idempotents and dual primitive idempotents respectively for \tilde{Q}_d . Let $\{A_i\}_{i=0}^d, \{A_i^*\}_{i=0}^d, \{E_i\}_{i=0}^d, \{E_i^*\}_{i=0}^d$ denote the distance matrices, dual distance matrices, primitive idempotents and dual primitive idempotents respectively for Q_d . We can inject the subconstituent algebra T(x) of \tilde{Q}_d into the subconstituent algebra $\tilde{T}(y)$ of Q_d as follows

The antipodal quotient of Q_d , continued

We have, for $0 \le i \le h$, $a_i = \frac{1}{2}(A_i + A_{d-i})$, and

$$a_i^* = egin{cases} A_i^* & i ext{ even} \ A_{d-i}^* & i ext{ odd.} \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

So $a^* = A^*_{d-1}$.

The antipodal quotient of Q_d , concluded

Because, A, A^*, A^{ε} act as Y, X, Z, we have that T(x) is an \mathcal{A} -module where y, x, z act as $A, (-1)^h s A^*, (-1)^h s i A^{\varepsilon}$. We also have that for $0 \le i \le h$

$$(-1)^h s A_i^* = \begin{cases} a_i^* & i \text{ even} \\ a_{d-i}^* & i \text{ odd}, \end{cases}$$

so $(-1)^h s A^* = a^*$. This means the Leonard pairs from \tilde{Q}_d also extend to Leonard triples, with imaginary adjacency matrix $a^{\varepsilon} = (-1)^h s i A^{\varepsilon}$. Furthermore, the application of $(-1)^h s$ to a T(x)-module for Q_d splits every irreducible T(x)-module into two irreducible \mathcal{A} -modules, one of which is an irreducible $\tilde{T}(y)$ -module.

E. Bannai and T. Ito.

Algebraic Combinatorics I: Association schemes, Benjamin-Cummings Lecture Note 58, Menlo Park, 1984.

B. Curtin.

Modular Leonard triples

Linear Algebra Appl. 424 (2007), 510-539.

Š. Miklavič. Leonard triples and hypercubes, April 10, 2008.

P. Terwilliger.

Two linear transformations each tridiagonal with respect to an eigenbasis of the other

Linear Algebra Appl. **330** (2001), 149-203.