Leonard triples associated with hypercubes and their antipodal quotients

George Martin Fell Brown
University of Wisconsin-Madison

August 4, 2010

Leonard pairs and Leonard triples
Definition of a Leonard pair
Definition of a Leonard triple

Distance-regular graphs

Definition of distance-regular graphs
The Subconstituent algebra T
The Q-polynomial property
Leonard pairs and Q-polynomial drg's
Hypercubes and $\mathfrak{s l} \mathbf{I}_{2}(\mathbb{C})$
Hypercubes
The Lie algebra $\mathfrak{s l}_{2}(\mathbb{C})$
Leonard triples and $\mathfrak{s l}_{2}(\mathbb{C})$-modules
The algebra \mathcal{A} and its modules
The algebra \mathcal{A}
Bipartite Leonard triples and \mathcal{A}-modules
Almost bipartite Leonard triples and \mathcal{A}-modules
From $\mathfrak{s l}_{2}$-modules to \mathcal{A}-modules
Distance-regular graphs associated with \mathcal{A}
The alternate Q-polynomial structure for Q_{d} with d even
The antipodal quotient of Q_{d} with d odd
$2^{\text {nd }}$ SYGN, Rogla, Slovenia, August 5, 2010

Definition of a Leonard pair

Let \mathbb{K} denote a field and let V be a vector space over \mathbb{K} with finite positive dimension. By a Leonard pair on V of diameter d we mean an ordered pair of linear transformations $A: V \rightarrow V$ and $A^{*}: V \rightarrow V$ which satisfy the conditions (i), (ii) below.
(i) There exists a basis $\left\{v_{i}\right\}_{i=0}^{d}$ for V with respect to which the matrix representing A is diagonal and the matrix representing A^{*} is irreducible tridiagonal,
(ii) There exists a basis $\left\{v_{i}^{*}\right\}_{i=0}^{d}$ for V with respect to which the matrix representing A^{*} is diagonal and the matrix representing A is irreducible tridiagonal.

Definition of a Leonard triple

Let \mathbb{K} denote a field and let V be a vector space over \mathbb{K} with finite positive dimension. By a Leonard triple on V of diameter d we mean an ordered triple of linear transformations $A: V \rightarrow V$, $A^{*}: V \rightarrow V$ and $A^{\varepsilon}: V \rightarrow V$ which satisfy the conditions (i)-(iii) below.
(i) There exists a basis $\left\{v_{i}\right\}_{i=0}^{d}$ for V with respect to which the matrix representing A is diagonal and the matrix representing A^{*}, A^{ε} are irreducible tridiagonal,
(ii) There exists a basis $\left\{v_{i}^{*}\right\}_{i=0}^{d}$ for V with respect to which the matrix representing A^{*} is diagonal and the matrix representing A^{ε}, A is irreducible tridiagonal,
(ii) There exists a basis $\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}$ for V with respect to which the matrix representing A^{ε} is diagonal and the matrix representing A, A^{*} is irreducible tridiagonal.

Definition of distance-regular graphs

Let Γ be a graph with vertex set \mathbf{X} and edge set \mathbf{E}. Given two vertices $x, y \in \mathbf{X}$ we define the distance between x and y to be the length of the shortest path from x to y, denoted $\partial(x, y)$. The diameter of Γ, denoted d, is the longest distance between any two points in \mathbf{X}.
For $0 \leq i \leq d$, we say the i th distance matrix, A_{i} is the matrix indexed by \mathbf{X} such that the $x y$ entry is 1 if $\partial(x, y)=i$ and 0 otherwise. A_{1} is called the adjacency matrix, also denoted A. The graph Γ is said to be distance-regular if $A_{i} A_{j}$ is a linear combination of the distance matrices for $0 \leq i, j \leq d$. Note this means A_{i} is a degree- i polynomial in A for $0 \leq i \leq d$.

The Subsonstituent algebra T

A is diagonalizable, with $d+1$ eigenvalues. Let $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$ be an ordering of the eigenvalues and let $E_{0}, E_{1}, \ldots, E_{d}$ be the corresponding primitive idempotents.
Fix a vertex x and, for $0 \leq i \leq d$ define E_{i}^{*} be the diagonal matrix with yy entry 1 when $\partial(x, y)=i$ and 0 otherwise. The Subconstituent algebra of Γ with respect to x denoted $T(x)$, is the algebra generated by $A, E_{0}^{*}, E_{1}^{*}, \ldots, E_{d}^{*}$.
If V is the vector space indexed by \mathbf{X} then
$A E_{i}^{*} V=E_{i-1}^{*} V+E_{i}^{*} V+E_{i+1}^{*} V$ for $0 \leq i \leq d$ (with
$\left.E_{-1}^{*}=E_{d+1}^{*}=0\right)$.

The Q-polynomial property

Given our ordering $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$ of eigenvalues and our vertex $x \in \mathbf{X}$, we define the dual distance matrices $A_{0}^{*}, A_{1}^{*}, \ldots, A_{d}^{*}$ to be diagonal matrices with yy entry equal to $m_{i}\left(E_{i}\right)_{x y}$ where m_{i} is the multiplicity of θ_{i} for $0 \leq i \leq d$. Note that, for $0 \leq i \leq d$, A_{i}^{*} has $E_{0}^{*}, E_{1}^{*}, \ldots, E_{d}^{*}$ as its primitive idempotents.
The ordering $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$ of eigenvalues for A is said to be Q-polynomial if $A_{1}^{*} E_{i} V=E_{i-1} V+E_{i} V+E_{i+1} V$ for $0 \leq i \leq d$ (with $E_{-1}=E_{d+1}=0$). In this case A_{1}^{*} is abbreviated A^{*} and called the dual adjacency matrix
Γ is said to be Q-polynomial if such an ordering of eigenvalues exists.

Leonard pairs and Q-polynomial drg's

In a Q-polynomial distance-regular graph the actions of A, A^{*} on an irreducible $T(x)$-module will always form a Leonard pair or a Tridiagonal pair (See Terwilliger's talk). There is always one $T(x)$-module with the same diameter as the graph. This is called the standard module. In this module, the actions of A, A^{*} always form a Leonard Pair.
We will now look at specific Q-polynomial distance-regular graphs where these Leonard pairs extend to Leonard triples.

Hypercubes

Given nonnegative integer d, the hypercube of diameter d, abbreviated Q_{d} has vertex set consisting of binary strings of length d, where two vertices are adjacent whenever the corresponding strings differ in exactly one entry. This is a distance-regular graph with Q-polynomial ordering $\{d-2 i\}_{i=0}^{d}$ of eigenvalues. Miklavič (2008) showed that you can produce an imaginary adjacency matrix A^{ε} for the hypercube, defined by $A^{\varepsilon}=\left[A, A^{*}\right] \frac{1}{2 \mathrm{i}}$.

The Lie algebra $\mathfrak{s l}_{2}(\mathbb{C})$ is the complex Lie algebra with generators X, Y, Z and relations

$$
\begin{align*}
& {[X, Y]=2 \mathbf{i} Z,} \tag{1}\\
& {[Y, Z]=2 \mathbf{i} X,} \tag{2}\\
& {[Z, X]=2 \mathbf{i} Y} \tag{3}
\end{align*}
$$

The actions of X, Y, Z on a finite-dimensional irreducible $\mathfrak{s l}_{2}(\mathbb{C})$-module will form a leonard triple. In $T(x)$ for Q_{d}, the matrices $A, A^{*}, A^{\varepsilon}$ satisfy these relations, so they act as a Leonard triple on every irreducible $T(x)$-module.

Leonard triples and $\mathfrak{s l}_{2}(\mathbb{C})$-modules

Let d be a nonnegative integer. Then there is one $(d+1)$-dimensional irreducible $\mathfrak{s l}_{2}(\mathbb{C})$-module up to isomorphism. There exist bases $\left\{v_{i}\right\}_{i=0}^{d},\left\{v_{i}^{*}\right\}_{i=0}^{d},\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}$ such that the matrix representing X with respect to $\left\{v_{i}\right\}_{i=0}^{d}, Y$ with respect to $\left\{v_{i}^{*}\right\}_{i=0}^{d}$ and Z with respect to $\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}$ is

$$
\left(\begin{array}{lllllll}
d & & & & & & \\
& d-2 & & & & & \\
& & d-4 & & & & \\
& & & \ddots & & & \\
& & & & 4-d & & \\
& & & & & 2-d & \\
& & & & & & -d
\end{array}\right)
$$

Leonard triples and $\mathfrak{s l}_{2}(\mathbb{C})$-modules, continued

the matrix representing X with respect to $\left\{v_{i}^{*}\right\}_{i=0}^{d}, Y$ with respect to $\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}$ and Z with respect to $\left\{v_{i}\right\}_{i=0}^{d}$ is

$$
\left(\begin{array}{ccccccc}
0 & d & & & & & \\
1 & 0 & d-1 & & & & \\
& 2 & 0 & d-2 & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & d-2 & 0 & 2 & \\
& & & & d-1 & 0 & 1 \\
& & & & & d & 0
\end{array}\right),
$$

Leonard triples and $\mathfrak{s l}_{2}(\mathbb{C})$-modules, concluded

the matrix representing X with respect to $\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}, Y$ with respect to $\left\{v_{i}\right\}_{i=0}^{d}$ and Z with respect to $\left\{v_{i}^{*}\right\}_{i=0}^{d}$ is

$$
\left(\begin{array}{ccccccc}
0 & d \mathbf{i} & & & & & \\
-\mathbf{i} & 0 & (d-1) \mathbf{i} & & & & \\
& -2 \mathbf{i} & 0 & (d-2) \mathbf{i} & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & (2-d) \mathbf{i} & 0 & 2 \mathbf{i} & \\
& & & & (1-d) \mathbf{i} & 0 & \mathbf{i} \\
& & & & & -d \mathbf{i} & 0
\end{array}\right) .
$$

We can also obtain Leonard triples from the following algebra. Let \mathcal{A} be the unital associative complex algebra with generators x, y, z and relations

$$
\begin{align*}
& x y+y x=2 z, \tag{4}\\
& y z+z y=2 x, \tag{5}\\
& z x+x z=2 y \tag{6}
\end{align*}
$$

This comes from a nonstandard quantum deformation of $\mathfrak{s l}_{2}(\mathbb{C})$ taken when $q=-1$.
The actions of x, y, z on a finite-dimensional irreducible \mathcal{A}-module will form a Leonard triple.

Bipartite Leonard triples and \mathcal{A}-modules

Let d be a nonnegative even integer. Then there is one bipartite $(d+1)$-dimensional irreducible \mathcal{A}-module up to isomorphism. There exist bases $\left\{v_{i}\right\}_{i=0}^{d},\left\{v_{i}^{*}\right\}_{i=0}^{d},\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}$ such that the matrix representing x with respect to $\left\{v_{i}\right\}_{i=0}^{d}, y$ with respect to $\left\{v_{i}^{*}\right\}_{i=0}^{d}$ and z with respect to $\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}$ is

$$
\left(\begin{array}{lllllll}
d & & & & & & \\
& 2-d & & & & & \\
& & d-4 & & & & \\
& & & \ddots & & & \\
& & & & 4-d & & \\
& & & & & d-2 & \\
& & & & & & -d
\end{array}\right)
$$

Bipartite Leonard triples and \mathcal{A}-modules, continued

the matrix representing x with respect to $\left\{v_{i}^{*}\right\}_{i=0}^{d}, y$ with respect to $\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}$ and z with respect to $\left\{v_{i}\right\}_{i=0}^{d}$ is

$$
\left(\begin{array}{ccccccc}
0 & d & & & & & \\
1 & 0 & d-1 & & & & \\
& 2 & 0 & d-2 & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & d-2 & 0 & 2 & \\
& & & & d-1 & 0 & 1 \\
& & & & & d & 0
\end{array}\right),
$$

Bipartite Leonard triples and \mathcal{A}-modules, concluded

the matrix representing x with respect to $\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}, y$ with respect to $\left\{v_{i}\right\}_{i=0}^{d}$ and z with respect to $\left\{v_{i}^{*}\right\}_{i=0}^{d}$ is

$$
\left(\begin{array}{ccccccc}
0 & d & & & & & \\
1 & 0 & 1-d & & & & \\
& -2 & 0 & d-2 & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & 2-d & 0 & 2 & \\
& & & & d-1 & 0 & -1 \\
& & & & & -d & 0
\end{array}\right)
$$

Almost bipartite Leonard triples and \mathcal{A}-modules

Let d be a nonnegative odd integer with $d=2 h+1$. Then there are four almost bipartite $(h+1)$-dimensional irreducible \mathcal{A}-module up to isomorphism determined by a choice of $\varepsilon, \delta \in\{ \pm 1\}$. There exist bases $\left\{v_{i}\right\}_{i=0}^{d},\left\{v_{i}^{*}\right\}_{i=0}^{d},\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}$ such that the matrix representing x with respect to $\left\{v_{i}\right\}_{i=0}^{d}, y$ with respect to $\left\{v_{i}^{*}\right\}_{i=0}^{d}$ and z with respect to $\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}$ is

$$
(-1)^{h}(2-d)
$$

$$
(-1)^{h}(d-4)
$$

Almost bipartite Leonard triples and \mathcal{A}-modules, continued

the matrix representing x with respect to $\left\{v_{i}^{*}\right\}_{i=0}^{d}, y$ with respect to $\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}$ and z with respect to $\left\{v_{i}\right\}_{i=0}^{d}$ is

$$
\delta(-1)^{h}\left(\begin{array}{ccccccc}
0 & d & & & & & \\
1 & 0 & d-1 & & & & \\
& 2 & 0 & d-2 & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & h-2 & 0 & h+3 & \\
& & & & h-1 & 0 & h+2 \\
& & & & & h & h+1
\end{array}\right)
$$

Almost bipartite Leonard triples and \mathcal{A}-modules, concluded

the matrix representing x with respect to $\left\{v_{i}^{\varepsilon}\right\}_{i=0}^{d}, y$ with respect to $\left\{v_{i}\right\}_{i=0}^{d}$ and z with respect to $\left\{v_{i}^{*}\right\}_{i=0}^{d}$ is $\delta \varepsilon$ times

$$
\left(\begin{array}{cccccc}
0 & d & & & & \\
1 & 0 & 1-d & & & \\
& -2 & \ddots & \ddots & & \\
& & \ddots & 0 & (-1)^{h-2}(h+3) & \\
& & & (-1)^{h-2}(h-1) & 0 & (-1)^{h-1}(h+2) \\
& & & & (-1)^{h-1} h & (-1)^{h} h+1
\end{array}\right)
$$

From $\mathfrak{s l}_{2}$-modules to \mathcal{A}-modules

Let V be a finite-dimensional $\mathfrak{s l}_{2}$-module. Define the operator

$$
p=\exp \left(\frac{\mathbf{i} X-Y}{2}\right) \exp \left(\frac{\mathbf{i} X+Y}{2}\right) \exp \left(\frac{\mathbf{i} X-Y}{2}\right) .
$$

Then $p X=X p, p Y=-Y p, p Z=-Z p$ and p^{2} is central and acts as $(-1)^{d}$ on an irreducible submodule of diameter d. Let k be a central operator on V that acts as 1 on even-diameter submodules and \mathbf{i} on odd-diameter submodules. and let $s=p k$. Then $s X=X s, s Y=-Y s, s Z=-Z s$ and $s^{2}=I$.

From $\mathfrak{s l}_{2}$-modules to \mathcal{A}-modules, continued.

This means that V can be given an \mathcal{A}-module structure with x, y, z acting as $s X, Y, s i Z$ respectively. The same is true if you replace s with $-s$.
If d is even and V is a $(d+1)$-dimensional irreducible $\mathfrak{s l}_{2}(\mathbb{C})$-module, then V is irreducible as an \mathcal{A}-module and you will get the bipartite Leonard pairs.
If d is odd and V is a $(d+1)$-dimensional irreducible $\mathfrak{s l}_{2}(\mathbb{C})$-module, then V is a direct sum of two almost bipartite \mathcal{A}-modules.

The alternate Q-polynomial structure for Q_{d} with d even

We can use the above result to give \mathcal{A}-module structures to the subconstituent algebras of hypercubes and related graphs. When d is even, the hypercube Q_{d} has two Q-polynomial structures. The other Q-polynomial ordering of eigenvalues is $\left\{(-1)^{i}(d-2 i)\right\}$. With respect to this ordering, let $\left\{a_{i}\right\}_{i=0}^{d},\left\{a_{i}^{*}\right\}_{i=0}^{d},\left\{e_{i}\right\}_{i=0}^{d},\left\{e_{i}^{*}\right\}_{i=0}^{d}$ denote the distance matrices, dual distance matrices, primitive idempotents and dual primitive idempotents respectively.
With respect to the ordering $\{d-2 i\}_{i=0}^{d}$, let $\left\{A_{i}\right\}_{i=0}^{d},\left\{A_{i}^{*}\right\}_{i=0}^{d},\left\{E_{i}\right\}_{i=0}^{d},\left\{E_{i}^{*}\right\}_{i=0}^{d}$ denote the distance matrices, dual distance matrices, primitive idempotents and dual primitive idempotents respectively.

The alternate Q-polynomial structure, continued

Then we have, for $0 \leq i \leq d, a_{i}=A_{i}, e_{i}^{*}=E_{i}^{*}$, but

$$
A_{i}^{*}= \begin{cases}a_{i}^{*} & i \text { even } \\ a_{d-i}^{*} & i \text { odd }\end{cases}
$$

and

$$
E_{i}= \begin{cases}e_{i} & i \text { even } \\ e_{d-i} & i \text { odd }\end{cases}
$$

So $a^{*}=A_{d-1}^{*}$.

The alternate Q-polynomial structure, concluded

Because, $A, A^{*}, A^{\varepsilon}$ act as Y, X, Z, we have that $T(x)$ is an \mathcal{A}-module where y, x, z act as $A,(-1)^{\frac{d}{2}} s A^{*},(-1)^{\frac{d}{2}} s i A^{\varepsilon}$. We also have that for $0 \leq i \leq d$

$$
(-1)^{\frac{d}{2}} s A_{i}^{*}= \begin{cases}a_{i}^{*} & i \text { even } \\ a_{d-i}^{*} & i \text { odd }\end{cases}
$$

so $(-1)^{\frac{d}{2}} s A=a$. This means the Leonard pairs from the alternate Q-polynomial structure of Q_{d} also extend to Leonard triples, with alternate imaginary adjacency matrix $a^{\varepsilon}=(-1)^{\frac{d}{2}} \mathbf{s} \mathbf{i} A^{\varepsilon}$.

The antipodal quotient of Q_{d} with d odd

When d is odd $(2 h+1)$, the hypercube Q_{d} only has one Q-polynomial structure. Instead we look at \tilde{Q}_{d}, the antipodal quotient of Q_{d}. This is a distance-regular graph with $\left\{(-1)^{i}(d-2 i)\right\}_{i=0}^{h}$ a Q-polynomial ordering of its eigenvalues. Let $\left\{a_{i}\right\}_{i=0}^{h},\left\{a_{i}^{*}\right\}_{i=0}^{h},\left\{e_{i}\right\}_{i=0}^{h},\left\{e_{i}^{*}\right\}_{i=0}^{h}$ denote the distance matrices, dual distance matrices, primitive idempotents and dual primitive idempotents respectively for \tilde{Q}_{d}. Let $\left\{A_{i}\right\}_{i=0}^{d},\left\{A_{i}^{*}\right\}_{i=0}^{d},\left\{E_{i}\right\}_{i=0}^{d},\left\{E_{i}^{*}\right\}_{i=0}^{d}$ denote the distance matrices, dual distance matrices, primitive idempotents and dual primitive idempotents respectively for Q_{d}. We can inject the subconstituent algebra $T(x)$ of \tilde{Q}_{d} into the subconstituent algebra $\tilde{T}(y)$ of Q_{d} as follows

The antipodal quotient of Q_{d}, continued

We have, for $0 \leq i \leq h, a_{i}=\frac{1}{2}\left(A_{i}+A_{d-i}\right)$, and

$$
a_{i}^{*}= \begin{cases}A_{i}^{*} & i \text { even } \\ A_{d-i}^{*} & i \text { odd }\end{cases}
$$

So $a^{*}=A_{d-1}^{*}$.

The antipodal quotient of Q_{d}, concluded

Because, $A, A^{*}, A^{\varepsilon}$ act as Y, X, Z, we have that $T(x)$ is an \mathcal{A}-module where y, x, z act as $A,(-1)^{h} s A^{*},(-1)^{h} s \mathbf{s} A^{\varepsilon}$. We also have that for $0 \leq i \leq h$

$$
(-1)^{h} s A_{i}^{*}= \begin{cases}a_{i}^{*} & i \text { even } \\ a_{d-i}^{*} & i \text { odd }\end{cases}
$$

so $(-1)^{h} s A^{*}=a^{*}$. This means the Leonard pairs from \tilde{Q}_{d} also extend to Leonard triples, with imaginary adjacency matrix $a^{\varepsilon}=(-1)^{h} \mathbf{s i} A^{\varepsilon}$.
Furthermore, the application of $(-1)^{h} s$ to a $T(x)$-module for Q_{d} splits every irreducible $T(x)$-module into two irreducible \mathcal{A}-modules, one of which is an irreducible $\tilde{T}(y)$-module.

E．E．Bannai and T．Ito，
Algebraic Combinatorics I：Association schemes，
Benjamin－Cummings Lecture Note 58，Menlo Park， 1984.
目 B．Curtin，
Modular Leonard triples
Linear Algebra Appl． 424 （2007），510－539．
圊 Š．Miklavič，
Leonard triples and hypercubes，
April 10， 2008.
軎 P．Terwilliger．
Two linear transformations each tridiagonal with respect to an eigenbasis of the other
Linear Algebra Appl． 330 （2001），149－203．

