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General Problem

Investigate the structure of graphs Γ where

|V (Γ)| finite

diam(Γ) = 2

Γ is symmetric or arc-transitive

Why?

small diameter - desirable in network design

includes important families of graphs, e.g. all arc-transitive strongly
regular graphs
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Normal quotients

Γ, a graph; N ⊳ G 6 Aut (Γ)

G -normal quotient of Γ with respect to N : graph ΓN with

V (ΓN) : N-orbits

E (ΓN) : {A,B} such that {a, b} ∈ E (Γ) for some a ∈ A, b ∈ B

ΓN is nontrivial if N is intransitive on V (Γ) and ΓN 6= Γ.
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Normal quotients

Properties of ΓN

diam(Γ) = 2
⇒ ΓN complete or diam(ΓN) = 2

Γ connected, G -arc-transitive
⇒ ΓN connected, G/N-arc-transitive

Γ is a k-multicover of ΓN for some k ∈ Z+

i.e., A ∼ΓN
B ⇒ each a ∈ A is adjacent to exactly k elements in B ,

and vice versa
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Normal quotients

Reduction

Γ a G -arc-transitive graph; diam(Γ) = 2. Either:

1. ∄ N ⊳ G with ΓN nontrivial
i.e., G acts quasiprimitively on V (Γ); or

2. ∃ N ⊳ G with ΓN nontrivial.

2.1 All nontrivial ΓN are complete graphs.
2.2 ∃ nontrivial ΓN with diam(ΓN) = 2.

If 2.2, set Γ′ := ΓN .
⇒ Γ′ is G/N-arc-transitive; diam(Γ′) = 2.
Repeat for Γ′ and G/N until we get 1 or 2.1. (basic graphs)

The graphs in this talk satisfy 2.1.
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Graphs with complete nontrivial normal quotients
Γ G -arc-transitive, diam(Γ) = 2, all nontrivial ΓN are complete graphs

Example
Γ = Km

[

Kn

]

(lexicographic product)

V (Γ) = V (Km) × V (Kn)

(x , y) ∼ (x ′, y ′) ⇔ x 6= x ′

x x ′

G := Sn ≀ Sm, N := Sm
n ⊳ G

ΓN
∼= Km (unique nontrivial G -normal quotient)
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Graphs with complete nontrivial normal quotients
Γ G -arc-transitive, diam(Γ) = 2, all nontrivial ΓN are complete graphs

Example
Γ = Km × Kn (direct product)

V (Γ) = V (Km) × V (Kn)

(x , y) ∼ (x ′, y ′) ⇔ x 6= x ′ and y 6= y ′

y y

y ′ y ′

x x ′

G := Sm × Sn; ∃ exactly 2 nontrivial G -normal quotients:
ΓM

∼= Kn (M = Sm), ΓN
∼= Km (N = Sn)
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Graphs with complete nontrivial normal quotients
Γ G -arc-transitive, diam(Γ) = 2, all nontrivial ΓN are complete graphs

CASE: Γ has ≥ 3 distinct nontrivial normal quotients.

Lemma

Let L,M,N ⊳ G (minimal normal), such that ΓL, ΓM , ΓN are nontrivial
and pairwise distinct. Then:

1 L ∼= M ∼= N and L, M and N are elementary abelian;

2 ΓL
∼= ΓM

∼= ΓN
∼= K|N|;

3 |V (Γ)| = |N|2; and

4 L 6 M × N = soc(G ), and M × N acts regularly on V (Γ).

Identify M,N ↔ U, vector space over a finite field
M × N ↔ V = U ⊕ U.

Then Γ ∼= Cay(V ,S) for some S ⊆ V , and G 6 AGL(V ).
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Graphs with complete nontrivial normal quotients
Γ G -arc-transitive, diam(Γ) = 2, all nontrivial ΓN are complete graphs

CASE: Γ has ≥ 3 distinct nontrivial normal quotients.

Theorem

Γ ∼= Cay(V ,S) and G ∼= TV ⋊ G0 6 AGL(V ) (TV := translations of V ),
where

V = U ⊕ U, U a vector space over a finite field;

G0 = {(h, h) | h ∈ H} 6 GL(V ) for some

H 6 GL(U), transitive on U \ {0U};

S ⊂ V is G0-orbit with 0V /∈ S, S = −S, 〈S〉 = V .

Conversely, any such graph is connected, G -arc-transitive, and has ≥ 3
nontrivial G -normal quotients, all complete graphs ∼= K|U|.

(Is diam(Γ) = 2?)
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Graphs with complete nontrivial normal quotients
Γ G -arc-transitive, diam(Γ) = 2, all nontrivial ΓN are complete graphs

CASE: Γ has ≥ 3 distinct nontrivial normal quotients.

Theorem

Γ ∼= Cay(V ,S) and G ∼= TV ⋊ G0 6 AGL(V ) (TV := translations of V ),
where

V = U ⊕ U, U a vector space over a finite field;

G0 = {(h, h) | h ∈ H} 6 GL(V ) for some

H 6 GL(U), transitive on U \ {0U};

S ⊂ V is G0-orbit with 0V /∈ S, S = −S, 〈S〉 = V .

Minimal normal subgroups of G = TV ⋊ G0 : subgroups of TV

corresponding to U ⊕ {0U}, {0U} ⊕ U, and {(u, uϕ) | u ∈ U} for any
ϕ ∈ CGL(U)(H) ⇒ ∃ at most |U| + 1 distinct nontrivial normal quotients
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Graphs with complete nontrivial normal quotients
Example : Γ with ≥ 3 distinct nontrivial normal quotients

V = U ⊕ U, G = TV ⋊ G0

U := vector space of dimension 6 over Fq, q even

H := G2(q), G0 := {(h, h) | h ∈ H}

Recall :

G2(q) 6 Sp(6, q); B := symplectic form

acts on a generalized hexagon H(q)
◮ has parameters (q, q)
◮ point set : set of 1-spaces of U
◮ line set : subset of the set of totally isotropic 2-spaces of U
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Graphs with complete nontrivial normal quotients
Example : Γ with ≥ 3 distinct nontrivial normal quotients

V = U ⊕ U, G = TV ⋊ G0

U := vector space of dimension 6 over Fq

H := G2(q), G0 := {(h, h) | h ∈ H}

G0-orbits in V \ {0V }:

U ⊕ {0U}, {0U} ⊕ U, {(u, λu) | u ∈ U} for any λ ∈ F∗
q

Sλ := {(u,w) | B(u,w) = λ, dim 〈u,w〉 = 2} for any λ ∈ F∗
q

SL := {(u,w) | u,w ∈ U; 〈u,w〉 ∈ line set of H(q)}

SL′ := {(u,w) | u,w ∈ U; 〈u,w〉 totally isotropic but not
a line of H(q)}
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Graphs with complete nontrivial normal quotients
Example : Γ with ≥ 3 distinct nontrivial normal quotients

V = U ⊕ U, G = TV ⋊ G0

U := vector space of dimension 6 over Fq

H := G2(q), G0 := {(h, h) | h ∈ H}

Γ = Cay(V ,S) is connected only if S = Sλ (λ ∈ F∗
q), SL or SL′ .

Theorem

diam(Γ) = 2 if S = SL, SL′ or Sλ (λ ∈ F∗
q).

Γ has (q + 1) distinct nontrivial G -normal quotients corresponding to
U ⊕ {0U}, {0U} ⊕ U, and {(u, λu) | u ∈ U} for each λ ∈ F∗

q; all ∼= Kq6 .
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Graphs with complete nontrivial normal quotients
Γ G -arc-transitive, diam(Γ) = 2, all nontrivial ΓN are complete graphs

CASE: Γ has exactly 2 distinct nontrivial normal quotients.

Suppose M,N ⊳ G (minimal normal) correspond to the two nontrivial
normal quotients.

If ∃ L ⊳ G (minimal normal), then either

L is transitive on V (Γ), or

L ∼= M or N.

Examples:

direct product Km × Kn

(P. Spiga) Γ = Cay(Fq ⊕ Fq,S), G = (Fq ⊕ Fq) ⋊ G0 where

◮ G0 =

{(

a 0
0 b

)

ab a square in F∗

q

}

◮ S = {(a, b) | ab a square in F∗

q}
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Graphs with complete nontrivial normal quotients
Γ G -arc-transitive, diam(Γ) = 2, all nontrivial ΓN are complete graphs

CASE: Γ has a unique nontrivial normal quotient ΓN .

WLOG suppose that N is the stabiliser of its orbits in V (Γ) (i.e., N is
1-closed).

Then either

N > soc(G ), or

N acts semiregularly on V (Γ).

Examples:

lexicographic product Km

[

Kn

]

others?

END
Thank you!
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