Symmetric graphs of diameter two with complete normal quotients

Carmen Amarra Michael Giudici Cheryl Praeger

The University of Western Australia
Symmetries of Graphs and Networks II
02 August 2010

General Problem

Investigate the structure of graphs Γ where

- $|V(\Gamma)|$ finite
- $\operatorname{diam}(\Gamma)=2$
- 「 is symmetric or arc-transitive

Why?

- small diameter - desirable in network design
- includes important families of graphs, e.g. all arc-transitive strongly regular graphs

Normal quotients

Г, a graph; $N \triangleleft G \leqslant \operatorname{Aut}(\Gamma)$
G-normal quotient of Γ with respect to $N: g r a p h \Gamma_{N}$ with

- $V\left(\Gamma_{N}\right)$: N-orbits
- $E\left(\Gamma_{N}\right):\{A, B\}$ such that $\{a, b\} \in E(\Gamma)$ for some $a \in A, b \in B$
Γ_{N} is nontrivial if N is intransitive on $V(\Gamma)$ and $\Gamma_{N} \neq \Gamma$.

Normal quotients

Properties of Γ_{N}

- $\operatorname{diam}(\Gamma)=2$
$\Rightarrow \Gamma_{N}$ complete or $\operatorname{diam}\left(\Gamma_{N}\right)=2$
- 「 connected, G-arc-transitive
$\Rightarrow \Gamma_{N}$ connected, G / N-arc-transitive
- Γ is a k-multicover of Γ_{N} for some $k \in \mathbb{Z}^{+}$
i.e., $A \sim_{\Gamma_{N}} B \Rightarrow$ each $a \in A$ is adjacent to exactly k elements in B, and vice versa

Normal quotients

Reduction

Γ a G-arc-transitive graph; $\operatorname{diam}(\Gamma)=2$. Either:

1. $\exists N \triangleleft G$ with Γ_{N} nontrivial
i.e., G acts quasiprimitively on $V(\Gamma)$; or
2. $\exists N \triangleleft G$ with Γ_{N} nontrivial.
2.1 All nontrivial Γ_{N} are complete graphs.
$2.2 \exists$ nontrivial Γ_{N} with $\operatorname{diam}\left(\Gamma_{N}\right)=2$.

If 2.2 , set $\Gamma^{\prime}:=\Gamma_{N}$.
$\Rightarrow \Gamma^{\prime}$ is G / N-arc-transitive; $\operatorname{diam}\left(\Gamma^{\prime}\right)=2$.
Repeat for Γ^{\prime} and G / N until we get 1 or 2.1. (basic graphs)
The graphs in this talk satisfy 2.1 .

Graphs with complete nontrivial normal quotients

ΓG-arc-transitive, $\operatorname{diam}(\Gamma)=2$, all nontrivial Γ_{N} are complete graphs

Example

$\Gamma=K_{m}\left[\overline{K_{n}}\right]$ (lexicographic product)

- $V(\Gamma)=V\left(K_{m}\right) \times V\left(K_{n}\right)$
- $(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow x \neq x^{\prime}$

$G:=S_{n} \imath S_{m}, N:=S_{n}^{m} \triangleleft G$
$\Gamma_{N} \cong K_{m}$ (unique nontrivial G-normal quotient)

Graphs with complete nontrivial normal quotients

ΓG-arc-transitive, $\operatorname{diam}(\Gamma)=2$, all nontrivial Γ_{N} are complete graphs

Example

$\Gamma=K_{m} \times K_{n}$ (direct product)

- $V(\Gamma)=V\left(K_{m}\right) \times V\left(K_{n}\right)$
- $(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow x \neq x^{\prime}$ and $y \neq y^{\prime}$

$G:=S_{m} \times S_{n} ; \exists$ exactly 2 nontrivial G-normal quotients:
$\Gamma_{M} \cong K_{n}\left(M=S_{m}\right), \Gamma_{N} \cong K_{m}\left(N=S_{n}\right)$

Graphs with complete nontrivial normal quotients
ΓG-arc-transitive, $\operatorname{diam}(\Gamma)=2$, all nontrivial Γ_{N} are complete graphs
CASE: Γ has ≥ 3 distinct nontrivial normal quotients.

Lemma

Let $L, M, N \triangleleft G$ (minimal normal), such that $\Gamma_{L}, \Gamma_{M}, \Gamma_{N}$ are nontrivial and pairwise distinct. Then:
(1) $L \cong M \cong N$ and L, M and N are elementary abelian;
(2) $\Gamma_{L} \cong \Gamma_{M} \cong \Gamma_{N} \cong K_{|N|}$;
(3) $|V(\Gamma)|=|N|^{2}$; and
(9) $L \leqslant M \times N=\operatorname{soc}(G)$, and $M \times N$ acts regularly on $V(\Gamma)$.

Identify $M, N \leftrightarrow U$, vector space over a finite field

$$
M \times N \leftrightarrow V=U \oplus U
$$

Then $\Gamma \cong \operatorname{Cay}(V, S)$ for some $S \subseteq V$, and $G \leqslant \operatorname{AGL}(V)$.

Graphs with complete nontrivial normal quotients

ΓG-arc-transitive, $\operatorname{diam}(\Gamma)=2$, all nontrivial Γ_{N} are complete graphs
CASE: Γ has ≥ 3 distinct nontrivial normal quotients.

Theorem

$\Gamma \cong \operatorname{Cay}(V, S)$ and $G \cong T_{V} \rtimes G_{0} \leqslant \operatorname{AGL}(V)\left(T_{V}:=\right.$ translations of $\left.V\right)$, where

- $V=U \oplus U, U$ a vector space over a finite field;
- $G_{0}=\{(h, h) \mid h \in H\} \leqslant G L(V)$ for some
- $H \leqslant G L(U)$, transitive on $U \backslash\left\{\mathbf{0}_{U}\right\}$;
- $S \subset V$ is G_{0}-orbit with $\mathbf{0}_{V} \notin S, S=-S,\langle S\rangle=V$.

Conversely, any such graph is connected, G-arc-transitive, and has ≥ 3 nontrivial G-normal quotients, all complete graphs $\cong K_{|U|}$. (Is $\operatorname{diam}(\Gamma)=2$?)

Graphs with complete nontrivial normal quotients

ΓG-arc-transitive, $\operatorname{diam}(\Gamma)=2$, all nontrivial Γ_{N} are complete graphs
CASE: Γ has ≥ 3 distinct nontrivial normal quotients.

Theorem

$\Gamma \cong \operatorname{Cay}(V, S)$ and $G \cong T_{V} \rtimes G_{0} \leqslant \operatorname{AGL}(V)\left(T_{V}:=\right.$ translations of $\left.V\right)$, where

- $V=U \oplus U, U$ a vector space over a finite field;
- $G_{0}=\{(h, h) \mid h \in H\} \leqslant G L(V)$ for some
- $H \leqslant G L(U)$, transitive on $U \backslash\left\{\mathbf{0}_{U}\right\}$;
- $S \subset V$ is G_{0}-orbit with $\mathbf{0}_{V} \notin S, S=-S,\langle S\rangle=V$.

Minimal normal subgroups of $G=T_{V} \rtimes G_{0}$: subgroups of T_{V} corresponding to $U \oplus\left\{\mathbf{0}_{U}\right\},\left\{\mathbf{0}_{U}\right\} \oplus U$, and $\left\{\left(u, u^{\varphi}\right) \mid u \in U\right\}$ for any $\varphi \in C_{\mathrm{GL}(U)}(H) \Rightarrow \exists$ at most $|U|+1$ distinct nontrivial normal quotients

Graphs with complete nontrivial normal quotients

Example: Γ with ≥ 3 distinct nontrivial normal quotients
$V=U \oplus U, G=T_{V} \rtimes G_{0}$

- $U:=$ vector space of dimension 6 over \mathbb{F}_{q}, q even
- $H:=G_{2}(q), G_{0}:=\{(h, h) \mid h \in H\}$

Recall :
$G_{2}(q) \leqslant \operatorname{Sp}(6, q) ; B:=$ symplectic form acts on a generalized hexagon $\mathcal{H}(q)$

- has parameters (q, q)
- point set : set of 1 -spaces of U
- line set : subset of the set of totally isotropic 2-spaces of U

Graphs with complete nontrivial normal quotients

Example : Γ with ≥ 3 distinct nontrivial normal quotients
$V=U \oplus U, G=T_{V} \rtimes G_{0}$

- $U:=$ vector space of dimension 6 over \mathbb{F}_{q}
- $H:=G_{2}(q), G_{0}:=\{(h, h) \mid h \in H\}$
G_{0}-orbits in $V \backslash\left\{\mathbf{0}_{V}\right\}$:
- $U \oplus\left\{\mathbf{0}_{U}\right\},\left\{\mathbf{0}_{U}\right\} \oplus U,\{(u, \lambda u) \mid u \in U\}$ for any $\lambda \in \mathbb{F}_{q}^{*}$
- $S_{\lambda}:=\{(u, w) \mid B(u, w)=\lambda, \operatorname{dim}\langle u, w\rangle=2\}$ for any $\lambda \in \mathbb{F}_{q}^{*}$
- $S_{\mathcal{L}}:=\{(u, w) \mid u, w \in U ;\langle u, w\rangle \in$ line set of $\mathcal{H}(q)\}$
- $S_{\mathcal{L}^{\prime}}:=\{(u, w) \mid u, w \in U ;\langle u, w\rangle$ totally isotropic but not a line of $\mathcal{H}(q)\}$

Graphs with complete nontrivial normal quotients

Example : Γ with ≥ 3 distinct nontrivial normal quotients
$V=U \oplus U, G=T_{V} \rtimes G_{0}$

- $U:=$ vector space of dimension 6 over \mathbb{F}_{q}
- $H:=G_{2}(q), G_{0}:=\{(h, h) \mid h \in H\}$
$\Gamma=\operatorname{Cay}(V, S)$ is connected only if $S=S_{\lambda}\left(\lambda \in \mathbb{F}_{q}^{*}\right), S_{\mathcal{L}}$ or $S_{\mathcal{L}^{\prime}}$.
Theorem
$\operatorname{diam}(\Gamma)=2$ if $S=S_{\mathcal{L}}, S_{\mathcal{L}^{\prime}}$ or $S_{\lambda}\left(\lambda \in \mathbb{F}_{q}^{*}\right)$.
Γ has $(q+1)$ distinct nontrivial G-normal quotients corresponding to $U \oplus\left\{\mathbf{0}_{U}\right\},\left\{\mathbf{0}_{U}\right\} \oplus U$, and $\{(u, \lambda u) \mid u \in U\}$ for each $\lambda \in \mathbb{F}_{q}^{*}$; all $\cong K_{q^{6}}$.

Graphs with complete nontrivial normal quotients

ΓG-arc-transitive, $\operatorname{diam}(\Gamma)=2$, all nontrivial Γ_{N} are complete graphs
CASE: Γ has exactly 2 distinct nontrivial normal quotients.
Suppose $M, N \triangleleft G$ (minimal normal) correspond to the two nontrivial normal quotients.

If $\exists L \triangleleft G$ (minimal normal), then either

- L is transitive on $V(\Gamma)$, or
- $L \cong M$ or N.

Examples:

- direct product $K_{m} \times K_{n}$
- (P. Spiga) $\Gamma=\operatorname{Cay}\left(\mathbb{F}_{q} \oplus \mathbb{F}_{q}, S\right), G=\left(\mathbb{F}_{q} \oplus \mathbb{F}_{q}\right) \rtimes G_{0}$ where - $G_{0}=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) \right\rvert\, a b\right.$ a square in $\left.\mathbb{F}_{q}^{*}\right\}$
- $S=\left\{(a, b) \mid a b\right.$ a square in $\left.\mathbb{F}_{q}^{*}\right\}$

Graphs with complete nontrivial normal quotients

ΓG-arc-transitive, $\operatorname{diam}(\Gamma)=2$, all nontrivial Γ_{N} are complete graphs
CASE: Γ has a unique nontrivial normal quotient Γ_{N}.
WLOG suppose that N is the stabiliser of its orbits in $V(\Gamma)$ (i.e., N is 1-closed).

Then either

- $N \geqslant \operatorname{soc}(G)$, or
- N acts semiregularly on $V(\Gamma)$.

Examples:

- lexicographic product $K_{m}\left[\overline{K_{n}}\right]$
- others?

END

Thank you!

