Symmetric graphs of diameter two with complete normal quotients

Carmen Amarra Michael Giudici Cheryl Praeger

The University of Western Australia

Symmetries of Graphs and Networks II

02 August 2010

General Problem

Investigate the structure of graphs Γ where

- $|V(\Gamma)|$ finite
- diam(Γ) = 2
- Γ is symmetric or arc-transitive

Why?

- small diameter desirable in network design
- includes important families of graphs, e.g. all arc-transitive strongly regular graphs

Normal quotients

 Γ , a graph; $N \lhd G \leqslant \operatorname{Aut}(\Gamma)$

G-normal quotient of Γ with respect to N : graph Γ_N with

- $V(\Gamma_N)$: *N*-orbits
- $E(\Gamma_N)$: $\{A, B\}$ such that $\{a, b\} \in E(\Gamma)$ for some $a \in A, b \in B$

 Γ_N is nontrivial if N is intransitive on $V(\Gamma)$ and $\Gamma_N \neq \Gamma$.

Normal quotients

Properties of Γ_N

- diam(Γ) = 2 $\Rightarrow \Gamma_N$ complete or diam(Γ_N) = 2
- Γ connected, *G*-arc-transitive $\Rightarrow \Gamma_N$ connected, *G*/*N*-arc-transitive
- Γ is a k-multicover of Γ_N for some k ∈ Z⁺
 i.e., A ~_{Γ_N} B ⇒ each a ∈ A is adjacent to exactly k elements in B, and vice versa

Normal quotients

Reduction

 Γ a *G*-arc-transitive graph; diam(Γ) = 2. Either:

- 1. $\nexists N \lhd G$ with Γ_N nontrivial
 - i.e., G acts quasiprimitively on $V(\Gamma)$; or
- 2. $\exists N \lhd G$ with Γ_N nontrivial.
 - 2.1 All nontrivial Γ_N are complete graphs.
 - 2.2 \exists nontrivial Γ_N with diam $(\Gamma_N) = 2$.

If 2.2, set $\Gamma' := \Gamma_N$. $\Rightarrow \Gamma'$ is G/N-arc-transitive; diam $(\Gamma') = 2$. Repeat for Γ' and G/N until we get 1 or 2.1. (basic graphs)

The graphs in this talk satisfy 2.1.

Example

- $\Gamma = K_m \left[\overline{K_n} \right] \text{ (lexicographic product)}$
 - $V(\Gamma) = V(K_m) \times V(K_n)$
 - $(x,y) \sim (x',y') \Leftrightarrow x \neq x'$

$$G := S_n \wr S_m, \ N := S_n^m \lhd G$$

 $\Gamma_N \cong K_m$ (unique nontrivial *G*-normal quotient)

Example

 $\Gamma = K_m \times K_n$ (direct product)

•
$$V(\Gamma) = V(K_m) \times V(K_n)$$

• $(x, y) \sim (x', y') \Leftrightarrow x \neq x'$ and $y \neq y'$

 $G := S_m \times S_n$; \exists exactly 2 nontrivial *G*-normal quotients: $\Gamma_M \cong K_n \ (M = S_m), \ \Gamma_N \cong K_m \ (N = S_n)$

CASE: Γ has \geq 3 distinct nontrivial normal quotients.

Lemma

Let $L, M, N \triangleleft G$ (minimal normal), such that $\Gamma_L, \Gamma_M, \Gamma_N$ are nontrivial and pairwise distinct. Then:

• $L \cong M \cong N$ and L, M and N are elementary abelian;

3
$$|V(\Gamma)| = |N|^2$$
; and

• $L \leq M \times N = \operatorname{soc}(G)$, and $M \times N$ acts regularly on $V(\Gamma)$.

Identify
$$M, N \leftrightarrow U$$
, vector space over a finite field
 $M \times N \leftrightarrow V = U \oplus U$.
Then $\Gamma \cong Cay(V, S)$ for some $S \subseteq V$, and $G \leq AGL(V)$.

CASE: Γ has \geq 3 distinct nontrivial normal quotients.

Theorem

 $\Gamma \cong Cay(V, S)$ and $G \cong T_V \rtimes G_0 \leqslant AGL(V)$ ($T_V := translations of V$), where

- $V = U \oplus U$, U a vector space over a finite field;
- $G_0 = \{(h, h) \mid h \in H\} \leqslant \mathsf{GL}(V)$ for some
- $H \leq GL(U)$, transitive on $U \setminus \{\mathbf{0}_U\}$;
- $S \subset V$ is G_0 -orbit with $\mathbf{0}_V \notin S$, S = -S, $\langle S \rangle = V$.

Conversely, any such graph is connected, *G*-arc-transitive, and has ≥ 3 nontrivial *G*-normal quotients, all complete graphs $\cong K_{|U|}$. (Is diam(Γ) = 2?)

CASE: Γ has \geq 3 distinct nontrivial normal quotients.

Theorem

 $\Gamma \cong Cay(V, S)$ and $G \cong T_V \rtimes G_0 \leqslant AGL(V)$ ($T_V := translations of V$), where

- $V = U \oplus U$, U a vector space over a finite field;
- $G_0 = \{(h, h) \mid h \in H\} \leqslant GL(V)$ for some
- $H \leq GL(U)$, transitive on $U \setminus \{\mathbf{0}_U\}$;
- $S \subset V$ is G_0 -orbit with $\mathbf{0}_V \notin S$, S = -S, $\langle S \rangle = V$.

Minimal normal subgroups of $G = T_V \rtimes G_0$: subgroups of T_V corresponding to $U \oplus \{\mathbf{0}_U\}, \{\mathbf{0}_U\} \oplus U$, and $\{(u, u^{\varphi}) \mid u \in U\}$ for any $\varphi \in C_{\mathsf{GL}(U)}(H) \Rightarrow \exists$ at most |U| + 1 distinct nontrivial normal quotients

Graphs with complete nontrivial normal quotients Example : Γ with \geq 3 distinct nontrivial normal quotients

$$V = U \oplus U$$
, $G = T_V
times G_0$

• U := vector space of dimension 6 over \mathbb{F}_q , q even

•
$$H := G_2(q), \ G_0 := \{(h, h) \mid h \in H\}$$

Recall :

 $G_2(q) \leq \text{Sp}(6, q); B :=$ symplectic form acts on a generalized hexagon $\mathcal{H}(q)$

- has parameters (q, q)
- point set : set of 1-spaces of U
- line set : subset of the set of totally isotropic 2-spaces of U

Graphs with complete nontrivial normal quotients Example : Γ with \geq 3 distinct nontrivial normal quotients

$$V = U \oplus U$$
, $G = T_V
times G_0$

• U := vector space of dimension 6 over \mathbb{F}_q

•
$$H := G_2(q), \ G_0 := \{(h, h) \mid h \in H\}$$

 G_0 -orbits in $V \setminus \{\mathbf{0}_V\}$:

•
$$U \oplus \{\mathbf{0}_U\}, \{\mathbf{0}_U\} \oplus U, \{(u, \lambda u) \mid u \in U\}$$
 for any $\lambda \in \mathbb{F}_q^*$

•
$$S_{\lambda} := \{(u, w) \mid B(u, w) = \lambda, \text{ dim } \langle u, w \rangle = 2\}$$
 for any $\lambda \in \mathbb{F}_q^*$

•
$$S_{\mathcal{L}} := \{(u, w) \mid u, w \in U; \langle u, w \rangle \in \text{ line set of } \mathcal{H}(q)\}$$

• $S_{\mathcal{L}'} := \{(u, w) \mid u, w \in U; \langle u, w \rangle \text{ totally isotropic but not a line of } \mathcal{H}(q)\}$

Graphs with complete nontrivial normal quotients Example : Γ with \geq 3 distinct nontrivial normal quotients

$$V = U \oplus U$$
, $G = T_V
times G_0$

• U := vector space of dimension 6 over \mathbb{F}_q

•
$$H := G_2(q), \ G_0 := \{(h, h) \mid h \in H\}$$

 $\Gamma = \mathsf{Cay}(V, S)$ is connected only if $S = S_{\lambda}$ $(\lambda \in \mathbb{F}_q^*)$, $S_{\mathcal{L}}$ or $S_{\mathcal{L}'}$.

Theorem

diam(
$$\Gamma$$
) = 2 if $S = S_{\mathcal{L}}$, $S_{\mathcal{L}'}$ or S_{λ} ($\lambda \in \mathbb{F}_{q}^{*}$).

 Γ has (q + 1) distinct nontrivial *G*-normal quotients corresponding to $U \oplus \{\mathbf{0}_U\}, \{\mathbf{0}_U\} \oplus U$, and $\{(u, \lambda u) \mid u \in U\}$ for each $\lambda \in \mathbb{F}_q^*$; all $\cong K_{q^6}$.

CASE: Γ has exactly 2 distinct nontrivial normal quotients.

Suppose $M, N \lhd G$ (minimal normal) correspond to the two nontrivial normal quotients.

If $\exists L \lhd G$ (minimal normal), then either

- L is transitive on $V(\Gamma)$, or
- $L \cong M$ or N.

Examples:

• direct product $K_m \times K_n$

CASE: Γ has a unique nontrivial normal quotient Γ_N .

WLOG suppose that N is the stabiliser of its orbits in $V(\Gamma)$ (i.e., N is 1-closed).

Then either

- $N \ge \operatorname{soc}(G)$, or
- N acts semiregularly on $V(\Gamma)$.

Examples:

• lexicographic product $K_m \left[\overline{K_n} \right]$

others?

END

Thank you!